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Abstract. Scheduling is one of the most successful application areas of constraint
programming mainly thanks to special global constraints designed to model resource
restrictions. Among these global constraints, edge-finding and not-first/not-last are
the most popular filtering algorithms for unary resources. In this paper we introduce
new O(n log n) versions of these two filtering algorithms and one more O(n log n)
filtering algorithm called detectable precedences. These algorithms use a special
data structures Θ-tree and Θ-Λ-tree. These data structures are especially designed
for ”what-if” reasoning about a set of activities so we also propose to use them for
handling so called optional activities, i.e. activities which may or may not appear
on the resource. In particular, we propose new O(n log n) variants of filtering algo-
rithms which are able to handle optional activities: overload checking, detectable
precedences and not-first/not-last.

1. Introduction

In scheduling, a unary resource is an often used generalization of a
machine (or a job in openshop). A unary resource models a set of
non-interruptible activities T which must not overlap in a schedule.

Each activity i ∈ T has the following requirements:

− earliest possible starting time esti

− latest possible completion time lcti

− processing time pi

A (sub)problem is to find a schedule satisfying all these require-
ments. This problem is long known to be computationally difficult [7]1.
One of the most used techniques to solve this problem is constraint

programming.
In constraint programming, we associate a unary resource constraint

with each unary resource. A purpose of such a constraint is to reduce

1 Appears as problem [SS1] on page 236. It is NP-hard in the strong sense, so
there is little hope even for a pseudo-polynomial algorithm. Therefore the use of CP
is well justified here.
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the search space by tightening the time bounds esti and lcti. This pro-
cess of elimination of infeasible values is called propagation, an actual
propagation algorithm is often called a filtering algorithm.

Due to the NP-hardness of the problem, it is not efficient to remove
all infeasible values. Instead, it is customary to use several fast but not
complete algorithms which can find only some impossible assignments.
These filtering algorithms are repeated in every node of a search tree,
therefore their speed and filtering power are crucial.

Filtering algorithms considered in this paper are:

Edge-finding. Paper [5] presents O(n log n) version, another two O(n2)
versions of edge-finding can be found in [8, 9].

Not-first/not-last. O(n log n) version of the algorithm can be found
in [12], two older O(n2) versions are in [2, 10].

Detectable precedences. This O(n log n) algorithm was introduced
in [12].

All these filtering algorithms can be used together to join their filtering
powers.

In this paper, we present not-first/not-last algorithm with time com-
plexity O(n log n) and edge-finding algorithm with the same time com-
plexity, which is quite simpler then the algorithm by Carlier and Pinson
[5] and it is faster then quadratic algorithms which are widely used
today. Another asset of the algorithm is the introduction of the Θ-Λ-
tree – a data structure which can be used to extend filtering algorithms
to handle optional activities.

1.1. Basic Notation

Let us establish the basic notation concerning a subset of activities.
Let T be a set of all activities on the resource and let Θ ⊆ T be an
arbitrary non-empty subset of activities. An earliest starting time estΘ,
a latest completion time lctΘ and a processing time pΘ of the set Θ are
defined as:

estΘ = min {estj , j ∈ Θ}

lctΘ = max {lctj , j ∈ Θ}

pΘ =
∑

j∈Θ

pj

Often we need to estimate an earliest completion time of a set Θ:

ECTΘ = max
{

estΘ′ +pΘ′ , Θ′ ⊆ Θ
}

(1)
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To extend the definitions also for Θ = ∅ let est∅ = −∞, lct∅ = ∞,
p∅ = 0 and ECT∅ = −∞.

2. Θ-Tree

Θ-tree was first introduced in [12]. In this paper we present a slightly
different version of this data structure. This new version is easier to
implement and runs a little bit faster then the old one.

The purpose of a Θ-tree is to quickly recompute ECTΘ when an
activity is inserted or removed from the set Θ. Because the set repre-
sented by the tree will always be named Θ in this paper, we will call
the tree Θ-tree.

A Θ-tree is a balanced binary tree. Activities from the set Θ are
represented by leaf nodes2. Internal nodes of the tree are used to hold
some precomputed values. In the following we do not make a difference
between an activity and the leaf node representing that activity.

Let v be an arbitrary node of the Θ-tree (an internal node or a
leaf). We define Leaves(v) to be the set of all activities represented in
the leaves of the subtree rooted at the node v. Further let:

ΣPv =
∑

j∈Leaves(v)

pj

ECTv =ECTLeaves(v) = max
{

estΘ′ +pΘ′ , Θ′ ⊆ Leaves(v)
}

Clearly, for an activity i ∈ Θ we have ΣPi = pi and ECTi = esti +pi.
Also, for root node r we have ECTr = ECTΘ.

For internal node v the value ΣPv can be easily computed from the
direct descendants left(v) and right(v):

ΣPv = ΣPleft(v) +ΣPright(v) (2)

In order to compute also ECTv quickly, the activities cannot be stored
in the leaves randomly, but in the ascending order by est from left to
right. I.e. for any two activities i, j ∈ Θ, if esti < estj then the activity
i is stored on the left from the activity j. Thanks to this property
the following inequality holds (Left(v) is a shortcut for Leaves(left(v)),
similarly Right(v)):

∀i ∈ Left(v),∀j ∈ Right(i) : esti ≤ estj (3)

2 This is the main difference from [12]. The tree is deeper by one level, however
a simpler computation of ECT and ΣP compensates that.
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Proposition 1. For an internal node v, the value ECTv can be com-
puted by the following recursive formula:

ECTv = max
{

ECTright(v), ECTleft(v) +ΣPright(v)

}

(4)

Proof. From the definition (1), the value ECTv is:

ECTv = ECTLeaves(v) = max
{

estΘ′ +pΘ′ , Θ′ ⊆ Leaves(v)
}

With respect to the node v we will split the sets Θ′ into the following
two categories:

1. Left(v) ∩ Θ′ = ∅, i.e. Θ′ ⊆ Right(v). Clearly:

max
{

estΘ′ +pΘ′ , Θ′ ⊆ Right(v)
}

= ECTRight(v) = ECTright(v)

2. Left(v)∩Θ′ 6= ∅. Then estΘ′ = estΘ′∩Left(v) because of the property
(3). Let S be the set of all possible Θ′ considered now:

S = {Θ′, Θ′ ⊆ Θ & Θ′ ∩ Left(v) 6= ∅}

Thus:

max
{

estΘ′ +pΘ′ , Θ′ ⊆ S
}

=

= max
{

estΘ′∩Left(v) +pΘ′∩Left(v) +pΘ′∩Right(v), Θ′ ⊆ S
}

=

= max
{

estΘ′∩Left(v) +pΘ′∩Left(v), Θ′ ⊆ S
}

+ pRight(v) =

= ECTleft(v) +ΣPright(v)

Therefore the formula (4) is correct. 2

Figure 1 shows an example a Θ-tree.
Thanks to the recursive formulae (2) and (4), the values ECTv and

ΣPv can be easily computed within usual operations with a balanced bi-
nary tree without changing their time complexities. Table I summarizes
time complexities of different operations with a Θ-tree.

Notice that so far Θ-tree does not require any particular way of
balancing. The only requirement is a time complexity O(log n) for
inserting or deleting a leaf, and time complexity O(1) for finding a
root node.

According to authors experience, the fastest way to implement Θ-
tree is to make the shape of the tree fixed during the whole compu-
tation. I.e. we start with the perfectly balanced tree which represents
all activities on the resource. To indicate that an activity i is not in
the set Θ it is enough to set ΣPi = 0 and ECTi = −∞. Clearly, these
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ΣP = 25

ECT = 45

ΣP = 11

ECT = 31

ΣP = 14

ECT = 44

esta = 0

pa = 5

ΣPa = 5

ECTa = 5

estb = 25

pb = 6

ΣPb = 6

ECTb = 31

estc = 30

pc = 4

ΣPc = 4

ECTc = 34

estd = 32

pd = 10

ΣPd = 10

ECTd = 52

Figure 1. An example of a Θ-tree for Θ = {a, b, c, d}.

Table I. Time complexities of opera-
tions on Θ-tree.

Operation Time Complexity

Θ := ∅ O(1) or O(n log n)

Θ := Θ ∪ {i} O(log n)

Θ := Θ \ {i} O(log n)

ECTΘ O(1)

additional “empty” leaves will not interfere with the formulae (2) and
(4).

3. Overload checking using Θ-tree

Let us consider an arbitrary set Ω ⊆ T . The overload rule (see e.g. [13])
says that if the set Ω cannot be processed within its time bounds then
no solution exists:

∀Ω ⊆ T : (estΩ +pΩ > lctΩ ⇒ fail) (5)

Let us suppose for a while that we are given an activity j ∈ T and we
want to check this rule only for these sets Ω ⊆ T which have lctΩ = lctj .
Now in the following consider the set Θ(j):

Θ(j) = {k, k ∈ T & lctk ≤ lctj}

Overloaded set Ω with lctΩ = lctj exists if and only if ECTΘ(j) > lctj .
The idea of the algorithm is to take activities j in ascending order by
lctj and adjust the set Θ accordingly.
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1 Θ := ∅ ;
2 for j ∈ T in ascending order of lctj do begin
3 Θ := Θ ∪ {j} ;
4 i f ECTΘ > lctj then
5 f a i l ; {No solution exists}
6 end ;

Time complexity of this algorithm is O(n log n): the activities have
to be sorted and n-times an activity is inserted into the set Θ.

4. Not-first/not-last using Θ-tree

Not-first and not-last are two symmetric propagation algorithms for
a unary resource. From these two, we will consider only the not-last
algorithm.

Let us consider a set Ω ⊆ T and an activity i ∈ (T \ Ω). The activity
i cannot be scheduled after the set Ω (i.e. i is not last within Ω ∪ {i})
if:

estΩ +pΩ > lcti −pi (6)

In that case, at least one activity from the set Ω must be scheduled
after the activity i. Therefore the value lcti can be updated:

lcti := min
{

lcti, max
{

lctj −pj, j ∈ Ω
}}

(7)

There are two versions of the not-first/not-last algorithms: [2] and
[10]. Both of them have time complexity O(n2). The first algorithm [2]
finds all the reductions resulting from the previous rules in one pass.
Still, after this propagation, next run of the algorithm may find more
reductions (not-first and not-last rules are not idempotent). Therefore
the algorithm should be repeated until no more reduction is found (i.e.
a fixpoint is reached). The second algorithm [10] is simpler and faster,
but more iterations of the algorithm may be needed to reach a fixpoint.

The algorithm presented here may also need more iterations to reach
a fixpoint then the algorithm [2] maybe even more than the algorithm
[10]. However, time complexity is reduced from O(n2) to O(n log n).

Let us suppose that we have chosen a particular activity i and now
we want to update lcti according to the not-last rule. To really achieve
some change of lcti using the rule (7), the set Ω must fulfil the following
property:

max
{

lctj −pj , j ∈ Ω
}

< lcti
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Therefore:

Ω ⊆
{

j, j ∈ T & lctj −pj < lcti & j 6= i
}

We will use the same trick as [10]: Because the search for the best

update of lcti may be time consuming we will simply search for some up-
date of lcti. If lcti can be updated better, it will be done in subsequent
runs of the algorithm. In fact, our algorithm updates lcti to

max
{

lctj −pj , j ∈ T & lctj −pj < lcti

}

which is the “smallest” possible update among all possible updates3.
Let us define the set Θ(i):

Θ(i) =
{

j, j ∈ T & lctj −pj < lcti

}

Thus: lcti can be changed according to the rule not-last if and only
if there is some set Ω ⊆ (Θ(i) \ {i}) for which the inequality (6) holds.
The only problem is to decide whether such a set Ω exists or not.

Let us recall the definition (1) of ECT and use it on the set Θ(i)\{i}:

ECTΘ(i)\{i} = max {estΩ +pΩ, Ω ⊆ Θ(i) \ {i}}

Notice, that ECTΘ(i)\{i} is exactly the maximum value which can be on
the left side of the inequality (6). Therefore there is a set Ω for which
the inequality (6) holds if and only if:

ECTΘ(i)\{i} > lcti −pi

The algorithm proceeds as follows. Activities i are taken in the as-
cending order of lcti. For each single activity i the set Θ(i) is computed
by extending the set Θ(i) of previous activity i4. For each i ECTΘ(i)\{i}

is checked and lcti is eventually updated:

1 for i ∈ T do
2 lct′i := lcti ;
3 Θ := ∅ ;
4 Q := queue of all activities j ∈ T in ascending order of lctj −pj ;

5 for i ∈ T in ascending order of lcti do begin

3 Notice that the condition i 6= j is not really necessary. If there exists at
least one j 6= i such that lctj −pj < lcti then even in the case lcti − pi =

max
{

lctj − pj , j ∈ T & lctj − pj < lcti

}

this value provides legal update of lcti.
This property is used at line 13 of the algorithm.

4 Using the simple fact that lctk ≤ lctl implies Θ(k) ⊆ Θ(l), i.e. the Θ(i) sets are
nested in the ascending order of lcti.
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6 while lcti > lctQ.first −pQ.first do begin

9 j := Q. f i r s t ;
10 Θ := Θ ∪ {j} ;
11 Q. dequeue ;
12 end ;
13 i f ECTΘ\{i} > lcti −pi then

14 lct′i := min
{

lctj −pj , lct′i

}

;

15 end ;
16 for i ∈ T do
17 lcti := lct′i ;

Lines 9–11 are repeated n times maximum over all iterations of the
for cycle on the line 5, because each time an activity is removed from
the queue. Check on the line 13 can be done in O(log n). Therefore the
time complexity of the algorithm is O(n log n).

Without changing the time complexity, the algorithm can be slightly
improved: the not-last rule can be also checked for the activity Q.first
just before the insertion of the activity Q.first into the set Θ (i.e. after
the line 6):

7 i f ECTΘ > lctQ.first −pQ.first then

8 lct′Q.first := lctj −pj ;

This modification may in some cases save few iterations of the
algorithm.

5. Detectable Precedences

An idea of detectable precedences was introduced in [11] for a batch

resource with sequence dependent setup times, which is an extension of
a unary resource.

The figure 2 is taken from [11]. It shows a situation when neither
edge-finding nor the not-first/not-last algorithm can change any time
bound, but a propagation of detectable precedences can (see section 6
for details on edge-finding algorithm).

Edge-finding algorithm recognizes that the activity A must be pro-
cessed before the activity C, i.e. A � C, and similarly B � C. Still,
each of these precedences alone is weak: they do not enforce any change
of any time bound. However, from the knowledge {A,B} � C we can
deduce estC ≥ estA +pA +pB = 21.

A precedence j � i is called detectable, if it can be “discovered”
only by comparing the time bounds of these two activities:

esti +pi > lctj −pj ⇒ j � i (8)
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A

B

C

pA = 11

pB = 10

pC = 5

0 = estA lctA = 25

1 = estB lctB = 27

estC = 14 lctC = 35

Figure 2. A sample problem for detectable precedences

Notice that both precedences A � C and B � C are detectable.

There is a simple quadratic algorithm, which propagates all known
precedences on a resource. For each activity i build a set Ω = {j ∈
T, j � i}. Note that precedences j � i can be of any type: detectable
precedences, search decisions or initial constraints. Using such set Ω,
esti can be adjusted: esti := max {esti, ECTΩ} because Ω � i.

1 for i ∈ T do begin
2 m := −∞ ;
3 for j ∈ T in non-decreasing order of estj do
4 i f j � i then
5 m := max {m, estj} + pj ;

6 esti := max {m, esti} ;
7 end ;

A symmetric algorithm adjusts lcti.

However, propagation of only detectable precedences can be done
within O(n log n). Let Θ(i) be the following set of activities:

Θ(i) =
{

j, j ∈ T & esti +pi > lctj −pj

}

Thus Θ(i) \ {i} is a set of all activities which must be processed before
the activity i because of detectable precedences. Using the set Θ(i)\{i}
the value esti can be adjusted:

esti := max
{

esti, ECTΘ(i)\{i}

}

There is also a symmetric rule for precedences j � i, but we will not
consider it here, nor the resulting symmetric algorithm.

Our algorithm is based on the observation that set Θ(i) does not
have to be constructed from scratch for each activity i. Rather, the
set Θ(i) can be computed incrementally in the similar way as in the
previous section.
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1 Θ := ∅ ;
2 Q := queue of all activities j ∈ T in ascending order of lctj −pj ;

3 for i ∈ T in ascending order of esti +pi do begin
4 while esti +pi > lctQ.first −pQ.first do begin

5 Θ := Θ ∪ {Q.first} ;
6 Q. dequeue ;
7 end ;

8 est′i := max
{

esti, ECTΘ\{i}

}

;

9 end ;
10 for i ∈ T do
11 esti := est′i ;

Initial sorts takes O(n log n). Lines 5 and 6 are repeated n times
maximum over all iterations of the for cycle, because each time an
activity is removed from the queue. Line 8 can be done in O(log n).
Therefore the time complexity of the algorithm is O(n log n).

6. Edge-Finding using Θ-Λ-tree

Edge-finding is probably the most often used filtering algorithm for a
unary resource constraint. Let us first recall classical edge-finding rules
[2]. Consider a set Ω ⊆ T and an activity i 6∈ Ω. If the following con-
dition holds, then the activity i has to be scheduled after all activities
from Ω:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

estΩ∪{i} +pΩ∪{i} = min {estΩ, esti} + pΩ +pi > lctΩ ⇒ Ω � i (9)

Once we know that the activity i must be scheduled after the set Ω,
we can adjust esti:

Ω � i ⇒ esti := max {esti, ECTΩ} (10)

Edge-finding algorithm propagates according to this rule and its
symmetric version. There are several implementations of edge-finding
algorithm, two different quadratic algorithms can be found in [8, 9], [5]
presents a O(n log n) algorithm.

In the following we present another edge-finding algorithm with time
complexity O(n log n). It is quite simpler than the algorithm by Carlier
and Pinson [5] and it is faster than the quadratic algorithms [8, 9] which
are widely used today.
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Proposition 2. Let Θ(j) = {k, k ∈ T & lctk ≤ lctj}. Filtering accord-
ing to rules (9), (10) is equivalent with filtering by the following rule:

∀j ∈ T, ∀i ∈ T \ Θ(j) :

ECTΘ(j)∪{i} > lctj ⇒ Θ(j) � i ⇒

⇒ esti := max
{

esti, ECTΘ(j)

}

(11)

Proof. We will prove the equivalence by proving both implications.
First, let us prove that the new rule (11) generates all the changes
which the original rules (9) and (10) do.

Let us consider a set Ω ⊆ T and an activity i ∈ T \ Ω. Let j be one
of the activities from Ω for which lctj = lctΩ. Thanks to this definition
of j we have Ω ⊆ Θ(j) and so (recall the definition (1) of ECT):

estΩ∪{i} +pΩ∪{i} = min {estΩ, esti} + pΩ +pi ≤ ECTΘ(j)∪{i}

ECTΩ ≤ ECTΘ(j)

Thus: when the original rule (9) holds for Ω and i, then the new rule
(11) holds for Θ(j) and i too, and the change of esti is at least the same
as the change by the rule (10). Hence the first implication is proved.

Now we will prove the second implication: filtering according to the
new rule (11) will not generate any changes which the old rules (9) and
(10) cannot prove too.

Let us consider an arbitrary set Ω ⊆ T . Overload rule (5) says that if
the set Ω cannot be processed within its time bounds then no solution
exists:

lctΩ − estΩ < pΩ ⇒ fail

It is useless to continue filtering when a fail was fired. Therefore in
the following we will assume that the resource is not overloaded.

Let us consider a pair of activities i, j for which the new rule (11)
holds. We define a set Ω′ as a subset of Θ(j) ∪ {i} for which:

ECTΘ(j)∪{i} = estΩ′ +pΩ′ (12)

Note that thanks to the definition (1) of ECT such a set Ω′ must exist.
If i 6∈ Ω′ then Ω′ ⊆ Θ(j), therefore

estΩ′ +pΩ′

(12)
= ECTΘ(j)∪{i}

(11)
> lctj ≥ lctΩ′

So the resource is overloaded (see the overload rule (5)) and fail should
have already been fired.
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Thus i ∈ Ω′. Let us define Ω = Ω′ \ {i}. We will assume that Ω 6= ∅,
because otherwise esti ≥ ECTΘ(j) and rule (11) changes nothing. For
this set Ω we have:

min {estΩ, esti}+pΩ +pi = estΩ′ +pΩ′

(12)
= ECTΘ(j)∪{i}

(11)
> lctj ≥ lctΩ

Hence the rule (9) holds for the set Ω. To complete the proof we have to
show that both rules (10) and (11) adjust esti equivalently, i.e. ECTΩ =
ECTΘ(j). We already know that ECTΩ ≤ ECTΘ(j) because Ω ⊆ Θ(j).
Suppose now for a contradiction that

ECTΩ < ECTΘ(j) (13)

Let Φ be a set Φ ⊆ Θ(j) such that:

ECTΘ(j) = estΦ +pΦ (14)

Therefore:

estΩ +pΩ ≤ ECTΩ

(13)
< ECTΘ(j)

(14)
= estΦ +pΦ (15)

Because the set Ω′ = Ω ∪ {i} defines the value of ECTΘ(j)∪{i} (i.e.
estΩ′ +pΩ′ = ECTΘ(j)∪{i}), it has the following property (see the defi-
nition (1) of ECT):

∀k ∈ Θ(j) ∪ {i} : estk ≥ estΩ′ ⇒ k ∈ Ω′

And because Ω = Ω′ \ {i}:

∀k ∈ Θ(j) : estk ≥ estΩ′ ⇒ k ∈ Ω (16)

Similarly, the set Φ defines the value of ECTΘ(j):

∀k ∈ Θ(j) : estk ≥ estΦ ⇒ k ∈ Φ (17)

Combining properties (16) and (17) together we have that either Ω ⊆ Φ
(if estΩ′ ≥ estΦ) or Φ ⊆ Ω (if estΩ′ ≤ estΦ). However, Φ ⊆ Ω is not
possible, because in this case estΦ +pΦ ≤ ECTΩ which contradicts the
inequality (15). The result is that Ω ( Φ, and so pΩ < pΦ.

Now we are ready to prove the contradiction:

ECTΘ(j)∪{i}
(12)
=

= estΩ′ +pΩ′

= min {estΩ, esti} + pΩ +pi because Ω = Ω′ \ {i}

= min {estΩ +pΩ +pi, esti +pΩ +pi}

< min {estΦ +pΦ +pi, esti +pΦ +pi} by (15) and pΩ < pΦ

≤ ECTΘ(j)∪{i} because Φ ⊆ Θ(j)

2
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Property 1. The rule (11) has a very useful property. Let us consider
an activity i and two different activities j1 and j2 for which the rule
(11) holds. Moreover let lctj1 ≤ lctj2 . Then Θ(j1) ⊆ Θ(j2) and so
ECTΘ(j1) ≤ ECTΘ(j2), therefore j2 yields better propagation then j1.
Thus for a given activity i it is sufficient to look for the activity j for
which (11) holds and lctj is maximum.

6.1. Θ-Λ-tree

Let us consider the alternative edge-finding rule (11). We choose an
arbitrary activity j and check the rule (11) for each applicable activity i,
i.e. we would like to find all activities i for which the following condition
holds:

ECTΘ(j)∪{i} > lctj

Unfortunately, such an algorithm would be too slow: before the check
can be performed, each particular activity i must be added into the
Θ-tree, and after the check the activity i have to be removed back from
the Θ-tree.

The idea how to surpass this problem is to extend the Θ-tree struc-
ture in the following way: all applicable activities i will be also included
in the tree, but as a gray nodes. A gray node represents an activity i

which is not really in the set Θ. However, we are curious what would
happen with ECTΘ if we are allowed to include one of the gray ac-
tivities into the set Θ. More exactly: let Λ ⊆ T be a set of all gray
activities, Λ ∩ Θ = ∅. The purpose of the Θ-Λ-tree is to compute the
following value:

ECT(Θ,Λ) = max
(

{ECTΘ} ∪
{

ECTΘ∪{i}, i ∈ Λ
})

The meaning of the values ECT and ΣP in the new tree remains
the same, however only regular (white) nodes are taken into account.
Moreover, in order to compute ECT(Θ,Λ) quickly, we add the following
two values into each node of the tree:

ΣPv = max
{

pΘ′ , Θ′ ⊆ Leaves(v) & |Θ′ ∩ Λ| ≤ 1
}

= max {{0} ∪ {pi, i ∈ Leaves(v) ∩ Λ}} +
∑

i∈Leaves(v)∩Θ

pi

ECTv = ECTLeaves(v) = max
{

estΘ′ +pΘ′ , Θ′ ⊆ Leaves(v) & |Θ′ ∩ Λ| ≤ 1
}

ΣP is maximum sum of processing activities in a subtree if one of gray
activities can be used. Similarly ECT is an earliest completion time of
a subtree with at most one gray activity included. For example of the
Θ-Λ-tree see figure 3.
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An idea how to compute values ΣPv and ECTv for internal node v

follows. A gray activity can be used only once: in the left subtree of v

or in the right subtree of v. Note that the gray activity used for ΣPv

can be different from the gray activity used for ECTv. The formulae
(2) and (4) can be modified to handle gray nodes:

ΣPv =max
{

ΣPleft(v) +ΣPright(v), ΣPleft(v) +ΣPright(v)

}

ECTv =max
{

ECTright(v), (a)

ECTleft(v) +ΣPright(v), ECTleft(v) +ΣPright(v)

}

(b)

Line (a) considers all sets Θ′ such that Θ′∩Leaves(left(v)) 6= ∅ (see the
definition (1) of ECT on page 2). Line (b) considers all sets Θ′ such
that Θ′ ∩ Leaves(left(v)) 6= ∅.

ΣP = 21

ECT = 44

ΣP = 26

ECT = 49

ΣP = 11

ECT = 34

ΣP = 11

ECT = 34

ΣP = 10

ECT = 42

ΣP = 15

ECT = 45

esta = 0

pa = 5

ΣPa = 5

ECTa = 5

ΣPa = 5

ECTa = 5

estb = 25

pb = 9

ΣPb = 9

ECTb = 34

ΣPb = 9

ECTb = 34

estc = 30

pc = 5

ΣPc = 0

ECTc = −∞

ΣPc = 5

ECTc = 35

estd = 32

pd = 10

ΣPd = 10

ECTd = 42

ΣPd = 10

ECTd = 42

Figure 3. An example of a Θ-Λ-tree for Θ = {a, b, d} and Λ = {c}.

Thanks to these recursive formulae, ECT and ΣP can be computed
within usual operations with balanced binary trees without changing
their time complexities. Note that together with ECT we can compute
for each node v the gray activity which is responsible for ECTk. We need
to know such responsible gray activity in the following algorithms.

Table II shows time complexities of selected operations on Θ-Λ-tree.

6.2. Edge-Finding Algorithm

The algorithm starts with Θ = T and Λ = ∅. Activities are sequentially
(in descending order by lctj) moved from the set Θ into the set Λ, i.e.
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Table II. Time complexities of operations on
Θ-Λ-tree.

Operation Time Complexity

(Θ, Λ) := (∅, ∅) O(1)

(Θ, Λ) := (T, ∅) O(n log n)

(Θ, Λ) := (Θ \ {i}, Λ ∪ {i}) O(log n)

Θ := Θ ∪ {i} O(log n)

Λ := Λ ∪ {i} O(log n)

Λ := Λ \ {i} O(log n)

ECT(Θ, Λ) O(1)

ECTΘ O(1)

white nodes are discolored to gray. As soon as ECT(Θ, Λ) > lctΘ, a
responsible gray activity i is updated. Thanks to the property 1 (page
13) the activity i cannot be updated better, therefore we can remove
the activity i from the tree (i.e. remove it from the set Λ).

1 for i ∈ T do
2 est′i := esti ;
3 (Θ, Λ) := (T, ∅) ;
4 Q := queue of all activities j ∈ T in descending order of lctj ;
5 j := Q.first ;
6 repeat
7 (Θ, Λ) := (Θ \ {j}, Λ ∪ {j}) ;
8 Q.dequeue ;
9 j := Q.first ;

10 i f ECTΘ > lctj then
11 f a i l ; {Resource is overloaded}

12 while ECT(Θ, Λ) > lctj do begin

13 i := gray activity responsible for ECT(Θ, Λ) ;
14 est′i := max{esti, ECTΘ} ;
15 Λ := Λ \ {i} ;
16 end ;
17 until Q.size = 0 ;
18 for i ∈ T do
19 esti := est′i ;

Note that at line 13 there have to be some gray activity responsible
for ECT(Θ, Λ) because otherwise we would end up by fail on line 11.

During the entire run of the algorithm, the maximum number of
iterations of the inner while loop is n, because each iteration removes
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an activity from the set Λ. Similarly, the number of iterations of the
repeat loop is n, because each time an activity is removed from the
queue Q. According to table II time complexity of each single line
within the loops is O(log n) maximum. Therefore the time complexity
of the whole algorithm is O(n log n).

Note that at the beginning Θ = T and Λ = ∅, hence there are no
gray activities and therefore ECTk = ECTk and ΣPk = ΣPk for each
node k. Hence we can save some time by building the initial Θ-Λ-tree
as a “normal” Θ-tree.

7. Optional Activities

Nowadays, many practical scheduling problems have to deal with alter-
natives – activities which can choose their resource, or activities which
exist only if a particular alternative of processing is chosen. From the
resource point of view, it is not yet decided whether such activities will
be processed or not. Therefore we will call such activities optional. For
an optional activity, we would like to speculate what would happen if
the activity actually would be processed by the resource.

Traditionally, resource constraints are not designed to handle op-
tional activities properly. However, several different modifications are
used to model them:

Dummy activities. It is basically a workaround for constraint solvers
which do not allow to add more activities on the resource dur-
ing problem solving (i.e. resource constraint is not dynamic [3]).
Processing times of activities are changed from constants to do-
main variables. Several “dummy” activities with possible process-
ing times 〈0, ∞) are added on the resource as a reserve for later
activity addition. Filtering algorithms work as usual, but they
use minimal possible processing time instead of original constant
processing time. Note that dummy activities have no influence
on other activities on the resource, because their processing time
can be zero. Once an alternative is chosen, a dummy activity is
turned into a regular activity (i.e. minimal processing time is no
longer zero). The main disadvantage of this approach is that an
impossibility of a particular alternative cannot be found before
that alternative is actually tried.

Filtering of options. The idea is to run a filtering algorithm several
times, each time with one of the optional activities added on the re-
source. When a fail is found, then the optional activity is rejected.
Otherwise time bounds of the optional activity can be adjusted.
[4] introduces so called PEX-edge-finding with time complexity
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O(n3). This is a pretty strong propagation, however rather time
consuming.

Modified filtering algorithms. Regular and optional activities are
treated differently: optional activities do not influence any other
activity on the resource, however regular activities influence other
regular activities and also optional activities [6]. Most of the fil-
tering algorithms can be modified this way without changing their
time complexities. However, this approach is a little bit weaker
than the previous one, because the previous one also checked whether
the addition of a optional activity would not cause an immediate
fail.

Cumulative resources. If we have a set of similar alternative ma-
chines, this set can be modeled as a cumulative resource. This
additional (redundant) constraint can improve the propagation
before activities are distributed between the machines. There is
also a special filtering algorithm [13] designed to handle this type
of alternatives.

To handle optional activities we extend each activity i by a variable
called existencei with the domain {true, false}. When existencei = true
then i is a regular activity, when existencei ∈ {true, false} then i is
an optional activity. Finally when existence = false we simply exclude
this activity from all our considerations.

To make the notation concerning optional activities easy, let R be
the set of all regular activities and O the set of all optional activities.

For optional activities, we would like to consider the following is-
sues:

1. If an optional activity should be processed by the resource (i.e. if
an optional activity is changed to a regular activity), would the
resource be overloaded? The resource is overloaded if there is such
a set Ω ⊆ R that:

estΩ +pΩ > lctΩ

Certainly, if a resource is overloaded then the problem has no
solution. Hence if an addition of a optional activity i results in
overloading then we can conclude that existencei = false.

2. If the addition of an optional activity i does not result in overload-
ing, what is the earliest possible start time and the latest possible
completion time of the activity i with respect to regular activities
on the resource? We would like to apply usual filtering algorithms
for the activity i, however the activity i cannot cause change of any
regular activity.
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3. If we add an optional activity i, will the first run of a filtering algo-
rithm result in a fail? For example algorithm detectable precedences
can increase estk of some activity k so much that estk +pk > lctk.
In that case we can also propagate existencei = false.

We will consider the item 1 in the next section “Overload Checking with
Optional Activities”. Items 2 and 3 are discussed in section “Filtering
with Optional Activities”.

8. Overload Checking with Optional Activities

In this section we present modified overload checking algorithm which
can handle optional activities. Basically, the original overload rule (5)
remains valid, however we must consider regular activities R only:

∀Ω ⊆ R : (lctΩ − estΩ < pΩ ⇒ fail)

In section 3 we showed that this rule is equivalent with:

∀j ∈ R :
(

ECTΘ(j) > lctj ⇒ fail
)

(18)

where Θ(j) is:

Θ(j) = {k, k ∈ R & lctk ≤ lctj}

Let us now take into account an optional activity o ∈ O. If the
processing of this activity would result in overloading, then the activity
can never be processed by the resource:

∀o ∈ O, ∀Ω ⊆ R :
(

estΩ∪{o} +pΩ∪{o} > lctΩ∪{o} ⇒ existenceo := false
)

(19)

Let the set Λ(j) be defined in the following way:

Λ(j) = {o, o ∈ O & lcto ≤ lctj}

The rule (19) is applicable if and only if there is such an activity j ∈ T

such that ECT(Θ(j),Λ(j)) > lctj . In this case, the activity which is
responsible for ECT(Θ(j),Λ(j)) can be excluded from the resource.

The following algorithm detects overloading, it also deletes all op-
tional activities k such that an addition of this activity k alone causes
an overload. Of course, a combination of several optional activities may
still cause an overload.
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1 (Θ, Λ) := (∅, ∅) ;

2 for i ∈ T in ascending order5 of lcti do begin
3 i f i is a optional activity then
4 Λ := Λ ∪ {i} ;
5 else begin
6 Θ := Θ ∪ {i} ;
7 i f ECTΘ > lcti then
8 f a i l ; {No solution exists}

9 while ECT(Θ, Λ) > lcti do begin

10 k := optional activity responsible for ECT(Θ, Λ) ;
11 existencek := false ;
12 Λ := Λ \ {k} ;
13 end ;
14 end ;
15 end ;

The time complexity of the algorithm is again O(n log n). The inner
while loop is repeated n times maximum because each time an activity
is removed from the set Λ. The outer for loop has also n iterations,
time complexity of each single line is O(log n) maximum (see the table
II).

9. Filtering with Optional Activities

The following section is an example how to extend a certain class of
filtering algorithms to handle optional activities. The idea is simple:
if the original algorithm uses Θ-tree, the modified algorithm uses Θ-
Λ-tree instead. Optional activities are represented by gray nodes of
the tree. For regular propagation, value ECTΘ is used the same way
as before. However, also ECT(Θ,Λ) is used now: If propagation using
ECT(Θ,Λ) would result in an immediate fail then the optional activity
responsible for that is excluded from the resource.

Let us demonstrate this idea on the detectable precedences algo-
rithm:

1 (Θ,Λ) := (∅, ∅) ;
2 Q := queue of all activities j ∈ T in ascending order of lctj −pj ;

3 for i ∈ T in ascending order of esti +pi do begin
4 while esti +pi > lctQ.first −pQ.first do begin

5 i f i is a regular activity then
6 Θ := Θ ∪ {Q.first} ;
7 else
8 Λ := Λ ∪ {Q.first} ;

5 In case of ties optional activities should be taken before regular activities.
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9 Q. dequeue ;
10 end ;

11 est′i := max
{

esti, ECTΘ\{i}

}

;

12 i f i is a regular activity then

13 while ECT(Θ \ {i} ,Λ) > lcti −pi then begin

14 k := an optional activity responsible for ECT (Θ \ {i} ,Λ) ;
15 Λ := Λ \ {k} ;
16 existencek := false ;
17 end ;
18 end ;
19 for i ∈ T do
20 esti := est′i ;

Optional activities are stored in the set Λ, therefore they are not
taken into account when the new value est′i is computed at the line 11.

At line 13 there is a check what would happen if one of the optional
activities become regular one. In that case est′i would be ECT(Θ \ {i} ,Λ).
If est′i > lcti −pi then the activity k can be excluded from the resource.

The complexity of the algorithm remains the same: O(n log n).

The same idea can be used to extend the not-first/not-last algo-
rithm:

1 for i ∈ T do
2 lct′i := lcti ;
3 (Θ,Λ) := (∅, ∅) ;
4 Q := queue of all activities j ∈ T in ascending order of lctj −pj ;

5 for i ∈ T in ascending order of lcti do begin
6 while lcti > lctQ.first −pQ.first do begin

9 i f Q. f i r s t is regular activity then begin
10 j := Q. f i r s t ;
11 j′ := Q. f i r s t ;
12 Θ := Θ ∪ {j} ;
13 end else begin
14 j′ := Q. f i r s t ;
15 Λ := Λ ∪ {j ′} ;
16 end ;
17 Q. dequeue ;
18 end ;
19 i f ECTΘ\{i} > lcti −pi then

20 lct′i := min
{

lctj −pj , lct′i

}

;

21 i f i is regular activity and lctj′ −pj′ < esti +pi then

22 while ECT(Θ \ {i} ,Λ) > lcti −pi do begin
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23 k := an optional activity responsible for ECT (Θ \ {i} ,Λ) ;
24 Λ := Λ \ {k} ;
25 existencek := false ;
26 end ;
27 end ;
28 for i ∈ T do
29 lcti := lct′i ;

Again, optional activities are stored in the gray nodes of the Θ-Λ-
tree, therefore they do not influence new time bound lct′i computed at
the line 20. At the line 25 we are allowed to set existencek := false,
because at this point we know that if the activity k become regular,
then the propagation would take place (compare lines 22 and 19), how-
ever such propagation would result in fail (because lct′i = lctj′ −pj′ <

esti +pi, see line 21). Time complexity of this algorithm is O(n log n).

Unfortunately, extending the edge-finding algorithm is not so easy
because this algorithm already uses Θ-Λ-tree. We will consider this in
our future work.

10. Experimental Results

First, we tested our propagation algorithms without optional activi-
ties on several jobshop problems taken from the OR library [1]. The
benchmark problem is to compute a destructive lower bound using
the shaving technique [8]. The destructive lower bound is the minimal
makespan for which propagation alone is not able to find conflict with-
out backtracking. Shaving is similar to the proof by a contradiction. We
choose an activity i, limit its esti or lcti and propagate. If an infeasibility
is found, then the limitation was invalid and so we can decrease lcti

or increase esti. To limit CPU time, shaving was used for each activity
only once. For more details about shaving see [8].

Table III shows the results. We measured the CPU6 time in seconds
needed to prove the lower bound. I.e. the propagation is done twice:
with the upper bound LB and LB-1. Column T1 shows total running
time when presented O(n log n) filtering algorithms are used (overload
checking, detectable precedences, not-first/not-last and edge-finding).
Column T2 shows total running times when quadratic algorithms are
used: quadratic overload checking, not-first/not-last from [10], edge-
finding from [9] and O(n log n) detectable precedences.

As can be seen, the new algorithms are strictly faster and the speedup
is increasing with a growing number of jobs.

6 Benchmarks were performed on Intel Pentium Centrino 1300MHz

clanek.tex; 21/10/2004; 10:14; p.21



22

Table III. Destructive Lower Bounds

Prob. Size LB T1 T2

abz5 10 x 10 1196 1.363 1.696

abz6 10 x 10 941 1.717 2.156

ft10 10 x 10 911 1.530 1.949

orb01 10 x 10 1017 1.649 2.123

orb02 10 x 10 869 1.415 1.796

la21 15 x 10 1033 0.691 1.030

la22 15 x 10 925 3.230 4.902

la36 15 x 15 1267 5.012 7.854

la37 15 x 15 1397 2.369 3.584

ta01 15 x 15 1224 8.641 13.66

ta02 15 x 15 1210 6.618 10.41

la26 20 x 10 1218 0.597 1.030

la27 20 x 10 1235 0.745 1.260

la29 20 x 10 1119 2.949 4.954

abz7 20 x 15 651 2.973 4.967

abz8 20 x 15 621 10.71 18.36

ta11 20 x 15 1295 13.24 23.26

ta12 20 x 15 1336 15.64 26.60

ta21 20 x 20 1546 34.98 61.63

ta22 20 x 20 1501 23.06 40.83

yn1 20 x 20 816 24.35 42.70

yn2 20 x 20 842 20.77 36.19

ta31 30 x 15 1764 3.397 7.901

ta32 30 x 15 1774 4.829 11.64

swv11 50 x 10 2983 12.02 39.24

swv12 50 x 10 2972 15.43 46.32

ta51 50 x 15 2760 7.695 26.14

ta52 50 x 15 2756 8.056 27.37

ta71 100 x 20 5464 72.07 432.5

ta72 100 x 20 5181 72.15 432.1

Optional activities were tested on modified 10x10 jobshop instances.
In each job, activities on 5th and 6th place were taken as alternatives.
Therefore in each problem there are 20 optional activities and 80 regular
activities. Table IV shows the results. Column LB is the destructive
lower bound computed without shaving, column Opt is the optimal
makespan. Column CH is the number of choicepoints needed to find
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the optimal solution and prove the optimality (i.e. optimal makespan
used as the initial upper bound). Finally the column T is the CPU time
in seconds.

As can be seen in the table, propagation is strong, all of the problems
were solved surprisingly quickly. However more experiments should be
made, especially on real life problem instances.

Table IV. Alternative activities

Prob. Size LB Opt CH T

abz5-alt 10 x 10 1031 1093 283 0.336

abz6-alt 10 x 10 791 822 17 0.026

orb01-alt 10 x 10 894 947 9784 12.776

orb02-alt 10 x 10 708 747 284 0.328

ft10-alt 10 x 10 780 839 4814 6.298

la16-alt 10 x 10 838 842 27 0.022

la17-alt 10 x 10 673 676 24 0.021

la18-alt 10 x 10 743 750 179 0.200

la19-alt 10 x 10 686 731 84 0.103

la20-alt 10 x 10 809 809 14 0.014
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