
Batch Processing with Sequence Dependent

Setup Times: Using Precedence Graph

Petr Viĺım

Charles University
Faculty of Mathematics and Physics

Malostranské náměst́ı 2/25, Praha 1, Czech Republic
vilim@kti.mff.cuni.cz

Abstract. Filtering (constraint propagation) turned out to be an effi-
cient method how to reduce the search space for backtrack-based algo-
rithms. In this paper I propose the use of precedence graph for scheduling
of batches with sequence dependent setup times. Domain filtering based
on this graph can improve existing filtering algorithms. I describe how to
easily detect all precedences found by algorithm edge-finding and how to
maintain transitive closure of the precedence graph in reasonable time.
All the results of this paper hold also for usual disjunctive scheduling be-
cause it is the special case of batch processing with sequence dependent
setup times.

1 Introduction

There are four filtering algorithms for batch processing with sequence depen-
dent setup times: edge finding, not-first/not-last, not-before/not-after [5] and
sequence composition [4]. Each of these algorithms filters out different inconsis-
tencies therefore they can be used together to get maximum pruning. In this
paper I show that it is possible to achieve even better filtering when these algo-
rithms are combined with filtering based on precedence graph.

Batch processing with sequence dependent setup times is an extension of
classical disjunctive scheduling (for definition of disjunctive scheduling see for
example [1]). We have to schedule the set of activities T on one resource with
the following characteristics:

– Each activity i ∈ T has its’ release time ri and due time di. Processing of the
activity cannot start before the release time ri and cannot complete after
the due time di. The role of a filtering algorithm is to reduce the intervals
〈ri, di〉 and this way prune the search space.

– Each activity i ∈ T has a family (type) fi. The set of all the families is F .
– Only the activities with the same family can be processed together. Activities

processed together form a batch – its processing start together and complete
together.

– Processing time of an activity i ∈ T depends only on the family fi. Let pfi

denotes this processing time, for short also pi.



– Sum of the capacities ci of activities in the batch cannot exceed the capacity
of the resource C. I.e. the resource is renewable.

– After the batch completes there is a setup time needed before another
batch can start. This setup time depends on the families of both consequent
batches. When the first batch have family f and the second one family g

then sfg denotes minimum setup time between them.
– There is no setup needed between the batches with the same family:

∀f ∈ F : sff = 0

– Setup time also meet the triangle inequality:

∀f, g, h ∈ F : sfg + sgh ≥ sfh

Often we need to deal with a subset of activities Ω ⊆ T . I quickly establish
the notation for Ω from [5]. Processing of Ω can start at first in the time rΩ =
min{ri, i ∈ Ω} and cannot end after the time dΩ = max{di, i ∈ Ω}. Let u(Ω)
be the minimal pure processing time needed for activities Ω. (When computing
u(Ω) I do not care about the setup times, release and due times.) Let FΩ be
the set of all families of Ω. Minimal setup time needed for processing Ω is
s(FΩ). When the processing of Ω have to start with a family f ∈ FΩ then the
minimum setup time needed is s(f, Ω). Minimum time needed for processing Ω

is p(Ω) = u(Ω) + s(FΩ). Function s can be precomputed in the time O(k22k).
For the details how these functions can be computed see [5].

The only one from the four mentioned algorithms which detects new prece-
dences is edge-finding. Therefore I briefly resume it here.

Consider an arbitrary set Ω ⊂ T and an activity i ∈ (T \ Ω). When the
activity i is scheduled before the set Ω the processing of Ω can start at first
in the time ri + pi. The setups for this processing is s(fi, FΩ ∪ {fi}). If such
processing of Ω ends after the time dΩ then the activity i cannot be scheduled
before the set Ω. So we get following not-before rule:

∀Ω ⊂ T, ∀i ∈ (T \Ω) :

ri + pi + s(fi, FΩ ∪ {fi}) + u(Ω) > dΩ ⇒ i 6� Ω (1)

Similarly, next rule says that when the activity i cannot be scheduled between
the activities Ω it have to be scheduled before whole set Ω or after it:

∀Ω ⊂ T, ∀i ∈ (T \Ω) :

dΩ − rΩ < p(Ω ∪ {i}) ⇒ (i � Ω orΩ � i) (2)

When both the rules (1), (2) hold then Ω � i. Resulting time bond adjust-
ment is:

Ω � i ⇒ ri ≥ max{rΩ′ + u(Ω′) + s(FΩ′ ∪ {fi}, fi), Ω′ ⊆ Ω} (3)

There are also symmetric rules which deal with precedences i � Ω. Edge
finding algorithm enforce all the changes from these rules.



Following picture is an example of an disjunctive scheduling problem (dis-
junctive scheduling is special case of batch scheduling). None of the discussed al-
gorithms (i.e. edge-finding, not-first/not-last, not-before/not-after and sequence
composition) find any time bound adjustment for this problem:

1

2

3

p1 = 11

p2 = 10

p3 = 5

0 = r1 d1 = 25

1 = r2 d2 = 27

r3 = 14 d3 = 35

Edge-finding recognize that the activity number 1 have to be processed before
the activity number 3, i.e. 1 � 3, and similarly 2 � 3. Still, each of these
precedences alone is weak – it do not enforce any change of the time bounds.
However from the knowledge {1, 2} � 3 we can deduce r3 = r1 + p1 + p2 = 21.
This is the motivation for my effort to maintain all of the precedences in the
precedence graph.

2 Precedence Graph

The easiest way how to find new precedences is the disjunctive constraint. It says
that if an activity i cannot be processed before nor together with an activity j

it have to be processed after the activity j. For batch processing with sequence
dependent setup times it means that i � j when following conditions do not
hold:

fi = fj & ci + cj ≤ C & min{di, dj} − max{ri, rj} ≥ pi (4)

rj + pj + sfjfi
≤ di − pi (5)

The first condition holds when the activities i, j can be processed together and
the second one when the activity j can be processed before the activity i. When
the both conditions (4) and (5) do not hold then I say that the precedence i � j

is detectable.

Now I show that all the precedences found by the algorithm edge-finding can
be subsequently found by the disjunctive constraint:

Proposition 1. When edge-finding does is not able to find further time bound

adjustments then all the precedences which edge-finding found are detectable.



Proof. Let us suppose that edge-finding proved Ω � j. I show that for an
arbitrary activity i ∈ Ω edge-finding made rj big enough for the precedence
i � j being detectable.

Edge-finding proved Ω � j so the condition (2) holds:

p(Ω ∪ {j}) > dΩ − rΩ

u(Ω ∪ {j}) + s(FΩ ∪ {fj}) > dΩ − rΩ

rΩ > dΩ − u(Ω ∪ {j}) − s(FΩ ∪ {fj}) (6)

Because edge-finding is not able to further change the time bounds according to
(3):

rj ≥ max{rΩ′ + u(Ω′) + s(FΩ′ ∪ {fj}, fj), Ω′ ⊆ Ω}

rj ≥ rΩ + u(Ω) + s(FΩ ∪ {fj}, fj)

rΩ can be replaced by the right side of the inequality (6):

rj > dΩ − u(Ω ∪ {j}) − s(FΩ ∪ {fj}) + u(Ω) + s(FΩ ∪ {fj}, fj)

And because:

u(Ω) − u(Ω ∪ {j}) ≥ −pi

s(FΩ ∪ {fj}, fj) − s(FΩ ∪ {fj}) ≥ 0

dΩ ≥ di

following inequality holds:
rj > di − pj

And thus neither condition (4) nor (5) hold and the precedence i � j is
detectable. ut

The filtering based on precedence graph is simple: build up the set Ω of all
activities which have to be processed before the task i and then use the rule (3):

Sort the activities according to ri

for i ∈ T do begin

Ω := ∅ ;
m := −∞ ;
for j ∈ T in decreasing order or rj do

if j � i then begin

Ω := Ω ∪ {j} ;
m := max(m, rj + u(Ω) + s(FΩ ∪ {fi}, fi)) ;

end;
ri:−max(m, ri);

end;

Note that there is also a symmetric version of this algorithm for precedences
i � Ω.



3 Transitive Closure

Several authors suggest to compute the transitive closure of the precedence
graph (e.g. [3], [2]). However computing transitive closure is time-consuming
(e.g. Floyd-Warshall algorithm is O(n3)). After the addition of a new precedence
into the graph the correction of the transitive closure can be made in the time
O(n2). Still the number of newly discovered precedences can be theoretically
even O(n2).

In this section I show that the correction of the transitive closure have to be
made only after the addition of nondetectable precedence.

When the precedence i � j is propagated by edge-finding or precedence
graph, new time bounds fulfill following inequalities (special cases of the rule (3)
and its’ symmetric version for Ω = {i} and Ω = {j}):

rj ≥ ri + pi + sfifj

di ≤ dj − pj − sfifj

Proposition 2. Let a � b, b � c and one of those precedences is detectable

and the second one is propagated. Then the precedence a � c is detectable.

Proof. We distinguish two cases:

1. a � b is detectable and b � c is propagated.

because b � c is propagated:

rc − sfbfc
≥ rb + pb

and because a � b is detectable:

rb + pb + sfbfa
> da − pa

rc − sfbfc
+ sfbfa

> da − pa

Together with triangle inequality for setup times sfbfc
+ sfcfa

≥ sfbfa
:

rc + sfcfa
> da − pa

Thus both the conditions (4), (5) cannot hold and the precedence a � c is
detectable.

2. a � b is propagated and b � c is detectable.

Because a � b is propagated:

db − pb ≥ da + sfafb

And because the second precedence b � c is detectable:

rc + pc + sfcfb
> db − pb

rc + pc + sfcfb
> da + sfafb



We use the triangle inequality again, this time sfcfa
+ sfafb

≥ sfcfb
:

rc + pc > da − sfcfa

Once again the conditions (4) and (5) do not hold and the precedence i � j

is detectable. ut

According to this proposition: when precedence propagating do not yield
any further adjustments then it made the transitive closure of all detectable

precedences with the rest of them. The only missing precedences are in the
transitive closure of nondetectable precedences. And when we add only O(1)
such precedences in each search step (e.g. as search decision), we can repair this
transitive closure in the time O(n2).

4 Conclusions

According to my experimental results1, filtering based on precedence graph can
improve the filtering for batch processing with sequence dependent setup times,
even when there are no nondetectable precedences. Cheap maintaining of full
transitive closure of the precedence graph can be also useful for other filtering
algorithms or some search heuristics. Note that all the results of this paper can
be also used for classical disjunctive scheduling, because it is the special case of
batch processing with sequence dependent setup times (C = ci = 1, sfg = 0).

References

[1] Philippe Baptiste and Claude Le Pape. Edge-finding constraint propagation
algorithms for disjunctive and cumulative scheduling. In Proceedings of the

Fifteenth Workshop of the U.K. Planning Special Interest Group, 1996.
[2] Peter Brucker. Complex scheduling problems, 1999. URL cite-

seer.nj.nec.com/brucker99complex.html.
[3] W. Nuijten F. Foccaci, P. Laborie. Solving scheduling problems with setup

times and alternative resources. In Proceedings of the 4th International Con-

ference on AI Planning and Scheduling, AIPS’00, pages 92–101, 2000.
[4] P. Viĺım and R. Barták. A filtering algorithm sequence composition for batch

processing with sequence dependent setup times. Technical Report 2002/1,
Charles University, Faculty of Mathematics and Physics, 2002.

[5] P. Viĺım and R. Barták. Filtering algorithms for batch processing with se-
quence dependent setup times. In Proceedings of the 6th International Con-

ference on AI Planning and Scheduling, AIPS’02, 2002.

1 Not included here because of space limitation


