
Computing Explanations for Global Scheduling

Constraints

Petr Viĺım

Charles University
Faculty of Mathematics and Physics

Malostranské náměst́ı 2/25, Praha 1, Czech Republic
vilim@kti.mff.cuni.cz

Abstract. Integration of explanations into a CSP solver is a technique
addressing difficult question “why my problem has no solution”. Besides
providing some sort of answer to the user, explanations can be used for
debugging, solving dynamic problems, and advanced search algorithms.
Explanations work pretty well with simple constraints. However, in order
to use explanations together with a global constraint, its filtering algo-
rithm (i.e. propagation) has to be enhanced to be explanation-aware.
This paper proposes such a technique, suitable for some sort of propa-
gation algorithms (e.g. some versions of edge-finding and not-first/not-
last). For edge-finding algorithm, this technique is then further improved.

1 Introduction

Our goal to to find such a subset of variables that it is not possible to satisfy
all the constraints between them. Of course, such subset should be as small as
possible, ideally set-wise minimal, but this property is not guaranteed. Let us
call such set a conflict set.

In order to find such a subset, whenever a filtering algorithm reduces a domain
of a variable, an explanation for this reduction is put on the stack. In this paper,
the explanation is the set of variables1 involved in the constraint. Not all of the
variables used by the constraint have to be included into explanation, however
the domain reduction must be justified only by the current state of the domains
of included variables, the domains of the rest of variables do not matter.

When the search comes to a dead end, generally there is a variable with an
empty domain. For current state of domains, this variable forms the minimum
conflict set we are looking for. Now we can go back through the stack of expla-
nations and reconstruct the conflict set while returning to the last choice-point:
each time an explanation for some variable from the conflict set is found, all vari-
ables from this explanation are added into the conflict set. Thus, until a domain
of same variable from conflict set is changed, the problem has no solution.

1 Paper [3] defines an (elimination) explanation as a subset of the constraints, not
variables. However, if we consider an explanation as a subset of variables, we can omit
some unimportant variables used in a global constraint and make the explanation
more accurate.



For example, let the domain of the variable A become empty, and let the last
explanations on the stack are A← {B}, C ← {A, D, X} and B ← {X, Z}. Then
the conflict set immediately after the choice-point is {A, B, X, Y }. Suppose now
that in this choice-point we are branching on two possible values 1, 2 of variable
X , and the second branch returned conflict set {A, C, X}. Before the choice-
point, the problem has no solution until at least one domain of the variables from
these two explanations is changed. Therefore, the the conflict set immediately
before the choice-point is {A, B, C, X, Z}.

{A, B, X, Z} {A, C, X}

{A, B, C, X, Z}

X = 1 X = 2

D ← {Y, Z}

{A, B, C, X, Z}

Y = 1 Y = 2

We continue to the next choice-point, which is branching on Y ; explanation
D ← {Y, Z} does not change the conflict set. Notice, that because Y is not in
the conflict set, the branch from Y = 2 does not have to be explored – it has no
solution for the same reason as the branch Y = 1.

2 Adapting a Global Constraint for Explanations

There are two main problems with adapting a filtering algorithm for explana-
tions: to find the actual explanation and to not slow the algorithm down too
much.

However, if the filtering algorithm has several common properties listed below
(e.g. edge-finding in [4] and not-first/not-last in [1] have them2), there is a general
way how to modify the algorithm to record explanations.

Explanations are already known: Some filtering algorithms can be easily
modified (without changing their time complexity) so that they know the expla-
nation for each reduction they make. However, writing down each explanation
can take O(n) time, because the explanation can have even n variables. The
filtering algorithm usually assumes that domain reduction is O(1) operation,
therefore simple explanation writing can make the algorithm n times slower.

Independence: A frequent property of the filtering algorithms is that all the
reductions made by one run of the algorithm are based on the state of the
domains before the filtering starts and these reductions are independent on each
other. For example, let the conflict set is {A} and a filtering algorithm generated

2 Their modification is straightforward, because of space limitation I do not include
them here.



these two explanations: A ← {B} and B ← {C}. Then new conflict set is only
{A, B}, because the reduction of domain DA is based on the state of the domain
DB before filtering.

2.1 Modification of global constraint

Because the reductions are independent on each other, it is not necessary to
record them all. An explanation is needed only the best reduction for each vari-
able. Let us run the algorithm twice. First time we just remember the best
found reduction for each variable, second time we find all of the reductions
again, but generate explanations only for the best of them. This way the num-
ber of generated explanation is O(n) and the total time of modified algorithm
is 2t(n) +O(n2), where t(n) is the running time of the original algorithm.

In the rest of the paper I show that in the case of edge-finding we can make
it even better.

3 Explanations for Disjunctive Resources

The methods presented in this section are designed for disjunctive resource, but
they can be easily extended to another resources, e.g. batch processing [6], [5].
Another approach to explanations for disjunctive scheduling can be found in [2].

In disjunctive scheduling there is a set of activities T which have to be pro-
cessed on one resource. The resource can process only one activity at a time,
preemption is not allowed. Time needed for processing the activity i ∈ T is pi,
processing cannot start before time ri and it has to complete at latest at time
di. Filtering algorithms usually increase the values ri or decrease di (i.e. they
reduce the domain Di = {ri, ri + 1, . . . , di − pi}).

3.1 Edge-Finding

Edge-finding is based on the following idea: Consider a subset of activities Ω. Let
rΩ denotes the minimum starting time of activities from Ω, i.e. rΩ = min{rj , j ∈
Ω} and similarly dΩ = max{dj , j ∈ Ω}. Minimum time needed for processing
the set Ω is pΩ =

∑
j∈Ω pj . Now consider an activity i 6∈ Ω. If the activity i is

not processed after all the activities Ω, then processing of Ω ends at first at time
t = min{ri, rΩ}+pi +pΩ . However, if t > dΩ then such processing is impossible.
Thus the activity i has to be processed after the set Ω and the release time ri

of the activity i can be increased to ri := max{ri, max{rU + pU , U ⊆ Ω}}.
This way we get the filtering rule and its symmetrical version:

min{ri, rΩ}+ pi + pΩ > di ⇒ ri ≥ max{rU + pU , U ⊆ Ω}

max{di, dΩ} − pi − pΩ < ri ⇒ di ≤ min{dU − pU , U ⊆ Ω}

Explanation for each such reduction is exactly the set Ω ∪ {i}.



Fortunately, filtering algorithm does not have to consider all the 2n sets Ω,
but only sets in the form of a task interval. Such a set is determined by two
activities a, b (possibly the same): Ω = {j, j ∈ T & rj ≥ ra & dj ≤ db}.
Therefore to record the set Ω into explanation, it is sufficient to write down the
values ra and db, the set Ω can be reconstructed3 in time O(n).

So for the edge-finding, it is not necessary to run the filtering algorithm twice
as suggested in the previous section. The best reduction and the values ra, db for
each variable can be recorded and explanations can be subsequently generated
in time O(n).

Reading the explanations During the step back, the explanations are read
from the stack and the conflict set is reconstructed. In the case of a global
constraint, we are facing a block of O(n) explanations; processing each relevant
of them takes O(n), that makes total O(n2) time needed. Can we make it more
quickly?

A little change in generation of the explanations can make the sequence
of dΩ nondecreasing. Just sort the activities by time di (in fact edge-finding
already sorted them), then for each activity generate the explanations which
have dΩ = di.

Consider a sequence of explanations on the stack. First, ignore all the expla-
nations which are not for the activities from conflict set. Now we have to add
into conflict set all the activities from the rest of sets, as shown on the figure
(a):

1

2

3

4

5
(a)

1

2

5
(b)

However, not all of these sets have to be considered. From the sets with the
same dΩ , only the one with minimal rΩ is needed, therefore we can eliminate the
set number 3. Also, we can eliminate a set Ω if it is a subset of its consequent
set. This way we can eliminate the set number 4. Resulting explanations are on
the figure (b), notice that both sequences ri and di are increasing.

Now we can take the activities in nondecreasing order of di and use “merge
sort idea” to process the explanations:

i:=first activity in ordering ;
Ω :=first explanation ;
while not out of activities or explanations do

begin

i f di > dΩ then Ω :=next explanations ;
else begin

3 Under the assumption that all changes of the values ri, di are restored during step
back together with explanations.



i f ri ≥ rΩ then add j into nogood ;
j :=next activity in ordering ;

end ;
end ;

Time complexity of this algorithm is O(n log n) (because of sorting). This
algorithm does not pay off when the number of relevant explanations is small. It
is possible to choose the right algorithm at runtime with respect to the number
of explanations.

4 Conclusions and Further Work

This paper proposes a method of modifying filtering algorithms to become
explanations-aware. This method is suitable for a number of algorithms. Mod-
ification of edge-finding algorithm was further improved. Similar technique can
be also used for the not-first/not-last algorithm [1].

In the near future I plan to finish the implementation of these algorithms and
compare running time and number of backtracks with non-explanation version
on some benchmark openshop and jobshop problems.

References

[1] Philippe Baptiste and Claude Le Pape. Edge-finding constraint propagation
algorithms for disjunctive and cumulative scheduling. In Proceedings of the

Fifteenth Workshop of the U.K. Planning Special Interest Group, 1996.
[2] Christelle Guéret, Narendra Jussien, and Christian Prins. Us-

ing intelligent backtracking to improve branch and bound methods:
an application to open-shop problems. European Journal of Op-

erational Research, 127(2):344–354, 2000. ISSN 0377-2217. URL
http://www.emn.fr/jussien/publications/gueret-EJOR00.pdf.

[3] Narendra Jussien. e-constraints: explanation-based constraint pro-
gramming. In CP01 Workshop on User-Interaction in Con-

straint Satisfaction, Paphos, Cyprus, 1 December 2001. URL
http://www.emn.fr/jussien/publications/jussien-WCP01.pdf.

[4] Paul Martin and David B. Shmoys. A New Approach to Computing Opti-
mal Schedules for the Job-Shop Scheduling Problem. In W. H. Cunningham,
S. T. McCormick, and M. Queyranne, editors, Proceedings of the 5th Interna-

tional Conference on Integer Programming and Combinatorial Optimization,

IPCO’96, pages 389–403, Vancouver, British Columbia, Canada, 1996.
[5] Petr Viĺım. Batch processing with sequence dependent setup times: New

results. In Proceedings of the 4th Workshop of Constraint Programming for

Decision and Control, CPDC’02, 2002.
[6] Petr Viĺım and Roman Barták. Filtering algorithms for batch processing

with sequence dependent setup times. In Proceedings of the 6th International

Conference on AI Planning and Scheduling, AIPS’02. The AAAI Press, 2002.


