
Unary Resource Constraint

with Optional Activities

Petr Viĺım1, Roman Barták1, Ondřej Čepek1,2

1 Charles University
Faculty of Mathematics and Physics

Malostranské náměst́ı 2/25, Praha 1, Czech Republic
2 Institute of Finance and Administration - VŠFS

vilim@kti.mff.cuni.cz

bartak@kti.mff.cuni.cz

ondrej.cepek@mff.cuni.cz

Abstract. Scheduling is one of the most successful application areas
of constraint programming mainly thanks to special global constraints
designed to model resource restrictions. Among these global constraints,
edge-finding filtering algorithm for unary resources is one of the most
popular techniques. In this paper we propose a new O(n log n) version of
the edge-finding algorithm that uses a special data structure called Θ-
Λ-tree. This data structure is especially designed for ”what-if” reasoning
about a set of activities so we also propose to use it for handling so
called optional activities, i.e. activities which may or may not appear
on the resource. In particular, we propose new O(n log n) variants of
filtering algorithms which are able to handle optional activities: overload
checking, detectable precedences and not-first/not-last.

1 Introduction

In scheduling, a unary resource is an often used generalization of a machine (or
a job in openshop). A unary resource models a set of non-interruptible activities
T which must not overlap in a schedule.

Each activity i ∈ T has the following requirements:

– earliest possible starting time esti

– latest possible completion time lcti

– processing time pi

A (sub)problem is to find a schedule satisfying all these requirements. One
of the most used techniques to solve this problem is constraint programming.

In constraint programming, we associate a unary resource constraint with
each unary resource. A purpose of such a constraint is to reduce a search space by
tightening the time bounds esti and lcti. This process of elimination of infeasible
values is called propagation, an actual propagation algorithm is often called a
filtering algorithm.

Naturally, it is not efficient to remove all infeasible values. Instead, it is
customary to use several fast but not complete algorithms which can find only
some of impossible assignments. These filtering algorithms are repeated in every
node of a search tree, therefore their speed and filtering power are crucial.

Filtering algorithms considered in this paper are:

Edge-finding. Paper [5] presents O(n log n) version, another two O(n2) ver-
sions of edge-finding can be found in [7, 8].

Not-first/not-last. O(n log n) version of the algorithm can be found in [10],
two older O(n2) versions are in [2, 9].

Detectable precedences. This O(n log n) algorithm was introduced in [10].

All these filtering algorithms can be used together to join their filtering powers.

This paper introduces new version of the edge-finding algorithm with time
complexity O(n log n). Experimental results shows that this new edge-finding
algorithm is faster than the quadratic algorithms [7, 8] even for n = 15. Another
asset of the algorithm is the introduction of the Θ-Λ-tree – a data structure
which can be used to extend filtering algorithms to handle optional activities.

2 Edge-Finding using Θ-Λ-tree

2.1 Basic Notation

Let us establish the basic notation concerning a subset of activities. Let T be
a set of all activities on the resource and let Θ ⊆ T be an arbitrary non-empty
subset of activities. An earliest starting time estΘ , a latest completion time lctΘ

and a processing time pΘ of the set Θ are defined as:

estΘ = min {estj , j ∈ Θ}

lctΘ = max {lctj , j ∈ Θ}

pΘ =
∑

j∈Θ

pj

Often we need to estimate an earliest completion time of a set Θ:

ECTΘ = max {estΘ′ + pΘ′ , Θ′ ⊆ Θ} (1)

To extend the definitions also for Θ = ∅ let est∅ = −∞, lct∅ = ∞, p∅ = 0 and
ECT∅ = −∞.

2.2 Edge-Finding Rules

Edge-finding is probably the most often used filtering algorithm for a unary
resource constraint. Let us recall classical edge-finding rules [2]. Consider a set

Ω ⊆ T and an activity i 6∈ Ω. If the following condition holds, then the activity
i has to be scheduled after all activities from Ω:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

estΩ∪{i} + pΩ∪{i} = min {estΩ , esti} + pΩ + pi > lctΩ ⇒ Ω � i (2)

Once we know that the activity i must be scheduled after the set Ω, we can
adjust esti:

Ω � i ⇒ esti := max {esti, ECTΩ} (3)

Edge-finding algorithm propagates according to this rule and its symmet-
ric version. There are several implementations of edge-finding algorithm, two
different quadratic algorithms can be found in [7, 8], [5] presents a O(n log n)
algorithm.

Proposition 1. Let Θ(j) = {k, k ∈ T & lctk ≤ lctj}. The rules (2), (3) are
not stronger than the following rule:

∀j ∈ T, ∀i ∈ T \ Θ(j) :

ECTΘ(j)∪{i} > lctj ⇒ Θ(j) � i ⇒ esti := max
{

esti, ECTΘ(j)

}

(4)

Actually, the rules (2) and (3) are equivalent with the rule (4). However, the proof of

their equivalence (the reverse implication) is rather technical and therefore it is not

included in the main body of this paper. An interested reader can find this proof in

the appendix of this paper.

Proof. Let us consider a set Ω ⊆ T and an activity i ∈ T \Ω. Let j be one of the
activities from Ω for which lctj = lctΩ . Thanks to this definition of j we have
Ω ⊆ Θ(j) and so (recall the definition (1) of ECT):

estΩ∪{i} + pΩ∪{i} = min {estΩ , esti} + pΩ + pi ≤ ECTΘ(j)∪{i}

ECTΩ ≤ ECTΘ(j)

Thus: when the original rule (2) holds for Ω and i, then the new rule (4) holds
for Θ(j) and i too, and the change of esti is at least the same as the change by
the rule (3). ut

Property 1. The rule (4) has a very useful property. Let us consider an activity
i and two different activities j1 and j2 for which the rule (4) holds. Moreover
let lctj1 ≤ lctj2 . Then Θ(j1) ⊆ Θ(j2) and so ECTΘ(j1) ≤ ECTΘ(j2), therefore j2
yields better propagation then j1. Thus for a given activity i it is sufficient to
look for the activity j for which (4) holds and lctj is maximum.

2.3 Θ-Λ-tree

A Θ-Λ-tree is an extension of a Θ-tree introduced in [10]. Θ-tree is a data
structure designed to represent a set of activities Θ ⊆ T and to quickly compute
ECTΘ . Θ-tree was already successfully used to speed up two filtering algorithms
for unary resource: not-first/not-last and detectable precedences [10].

In a Θ-tree, activities are represented as nodes in a balanced binary search
tree with respect to est. In the following we will not make a difference between
an activity and the tree node which represents that activity. Besides an activity
itself, each node k of a Θ-tree holds the following two values:

ΣPk =
∑

j∈Subtree(k)

pj

ECTk = ECTSubtree(k) = max {estΘ′ + pΘ′ , Θ′ ⊆ Subtree(k)}

where Subtree(k) is a set of all activities in a subtree rooted at node k (including
activity k itself). The values ΣPk and ECTk can be computed recursively from
the direct descendants of the node (for more details see [10]):

ΣPk =ΣPleft(k) + pk + ΣPright(k) (5)

ECTk =max
{

ECTright(k), (6)

estk + pk + ΣPright(k),

ECTleft(k) + pk + ΣPright(k)

}

esta = 30

pa = 3

ΣPa = 41

ECTa = 54

estb = 10

pb = 7

ΣPb = 18

ECTb = 31

estc = 35

pc = 6

ΣPc = 20

ECTc = 52

estd = 0

pd = 5

ΣPd = 5

ECTd = 5

este = 25

pe = 6

ΣPe = 6

ECTe = 31

estf = 30

pf = 4

ΣPf = 4

ECTf = 34

estg = 42

pg = 10

ΣPg = 10

ECTg = 52

Fig. 1. An example of a Θ-tree for Θ = {a, b, c, d, e, f, g}.

Let us now consider alternative edge-finding rule (4). We choose an arbitrary
activity j and now we want to check the rule (4) for each applicable activity i,

i.e. we would like to find all activities i for which the following condition holds:

ECTΘ(j)∪{i} > lctj

Unfortunately, such an algorithm would be too slow: before the check can be
performed, each particular activity i must be added into the Θ-tree, and after
the check the activity i have to be removed back from the Θ-tree.

The idea how to surpass this problem is to extend the Θ-tree structure the
following way: all applicable activities i will be also included in the tree, but as
a gray nodes. A gray node represents an activity i which is not really in the set
Θ. However, we are curious what would happen with ECTΘ if we are allowed to
include one of the gray activities into the set Θ. More exactly: let Λ ⊆ T be a
set of all gray activities, Λ ∩ Θ = ∅. The purpose of the Θ-Λ-tree is to compute
the following value:

ECT(Θ, Λ) = max
{

{ECTΘ} ∪
{

ECTΘ∪{i}, i ∈ Λ
}}

The meaning of the values ECT and ΣP in the new tree remains the same,
however only regular (white) nodes are taken into account. Moreover, in order
to compute ECT(Θ, Λ) quickly, we add the following two values into each node
of the tree:

ΣPk = max {pΘ′ , Θ′ ⊆ Subtree(k) & |Θ′ ∩ Λ| ≤ 1}

= max {{0} ∪ {pi, i ∈ Subtree(k) ∩ Λ}}+
∑

i∈Subtree(k)∩Θ

pi

ECTk = ECTSubtree(k) = max {estΘ′ + pΘ′ , Θ′ ⊆ Subtree(k) & |Θ′ ∩ Λ| ≤ 1}

ΣP is maximum sum of processing activities in a subtree if one of gray activities
can be used. Similarly ECT is an earliest completion time of a subtree with at
most one gray activity included.

An idea how to compute values ΣPk and ECTk in node k follows. A gray
activity can be used only once. Therefore when computing ΣPk and ECTk, a
gray activity can be used only in one of the following places: in the left subtree
of k, by the activity k itself (if it is gray), or in the right subtree of k. Note that
the gray activity used for ΣPk can be different from the gray activity used for
ECTk. The formulae (5) and (6) can be modified to handle gray nodes.

We distinguish two cases: node k is gray or node k is white. When k is white
then:

ΣPk =max
{

ΣPleft(k) + pk + ΣPright(k),

ΣPleft(k) + pk + ΣPright(k)

}

ECTk =max
{

ECTright(k), (a)

estk + pk + ΣPright(k), (b)

ECTleft(k) + pk + ΣPright(k), (c)

ECTleft(k) + pk + ΣPright(k)

}

(c)

Line (a) considers all sets Θ′ such that Θ′ ⊆ Subtree(right(k)) (see the defi-
nition (1) of ECT on page 2). Line (b) considers all sets Θ′ such that Θ′ ⊆
Subtree(right(k)) ∪ {k} and k ∈ Θ′. Finally lines (c) consider sets Θ′ such that
Θ′ ∩ Subtree(left(k)) 6= ∅.

When k is gray then (the meaning of the labels (a), (b) and (c) remains the
same):

ΣPk = max
{

ΣPleft(k) + ΣPright(k),

ΣPleft(k) + pk + ΣPright(k),

ΣPleft(k) + ΣPright(k)

}

ECTk = max
{

ECTright(k), (a)

estk + pk + ΣPright(k), (b)

ECTleft(k) + ΣPright(k), (c)

ECTleft(k) + pk + ΣPright(k), (c)

ECTleft(k) + ΣPright(k)

}

(c)

esta = 30

pa = 3

ΣPa = 24

ECTa = 44

ΣPa = 34

ECTa = 54

estb = 10

pb = 7

ΣPb = 11

ECTb = 31

ΣPb = 18

ECTb = 31

estc = 35

pc = 6

ΣPc = 10

ECTc = 41

ΣPc = 20

ECTc = 52

estd = 0

pd = 5

ΣPd = 5

ECTd = 5

ΣPd = 5

ECTd = 5

este = 25

pe = 6

ΣPe = 6

ECTe = 31

ΣPe = 6

ECTe = 31

estf = 30

pf = 4

ΣPf = 4

ECTf = 34

ΣPf = 4

ECTf = 34

estg = 42

pg = 10

ΣPg = 0

ECTg = −∞

ΣPg = 10

ECTg = 52

Fig. 2. An example of a Θ-Λ-tree for Θ = {a, c, d, e, f} and Λ = {b, g}.

Thanks to these recursive formulae, ECT and ΣP can be computed within
usual operations with balanced binary trees without changing their time com-
plexities. Note that together with ECT we can compute for each node k the gray
activity responsible for ECTk. We need to know such responsible gray activity
in the following algorithms.

Table 1 shows time complexities of some operations on Θ-Λ-tree.

Operation Time Complexity

(Θ, Λ) := (∅, ∅) O(1)

(Θ, Λ) := (T, ∅) O(n log n)

(Θ, Λ) := (Θ \ {i}, Λ ∪ {i}) O(log n)

Θ := Θ ∪ {i} O(log n)

Λ := Λ ∪ {i} O(log n)

Λ := Λ \ {i} O(log n)

ECT(Θ, Λ) O(1)

ECTΘ O(1)

Table 1. Time complexities of operations on Θ-Λ-tree.

2.4 Edge-Finding Algorithm

The algorithm starts with Θ = T and Λ = ∅. Activities are sequentially (in
descending order by lctj) moved from the set Θ into the set Λ, i.e. white nodes
are discolored to gray. As soon as ECT(Θ, Λ) > lctΘ , a responsible gray activity
i is updated. Thanks to the property 1 (page 3) the activity i cannot be updated
better, therefore we can remove the activity i from the tree (i.e. remove it from
the set Λ).

1 for i ∈ T do
2 est′i := esti ;
3 (Θ, Λ) := (T, ∅) ;
4 Q := queue of all activities j ∈ T in descending order of lctj ;
5 j := Q.first ;
6 repeat
7 (Θ, Λ) := (Θ \ {j}, Λ ∪ {j}) ;
8 Q.dequeue ;
9 j := Q.first ;

10 i f ECTΘ > lctj then
11 f a i l ; {Resource is overloaded}

12 while ECT(Θ, Λ) > lctj do begin

13 i := gray activity responsible for ECT(Θ, Λ) ;
14 est′i := max{esti, ECTΘ} ;
15 Λ := Λ \ {i} ;
16 end ;
17 until Q.size = 0 ;
18 for i ∈ T do
19 esti := est′i ;

Note that at line 13 there have to be some gray activity responsible for
ECT(Θ, Λ) because otherwise we would end up by fail on line 11.

During the entire run of the algorithm, maximum number of iterations of
the inner while loop is n, because each iteration removes an activity from the
set Λ. Similarly, number of iterations of the repeat loop is n, because each time

an activity is removed from the queue Q. According to table 1 time complexity
of each single line within the loops is O(log n) maximum. Therefore the time
complexity of the whole algorithm is O(n log n).

Note that at the beginning Θ = T and Λ = ∅, hence there are no gray
activities and therefore ECTk = ECTk and ΣPk = ΣPk for each node k. Hence
we can save some time by building the initial Θ-Λ-tree as a “normal” Θ-tree.

3 Optional Activities

Nowadays, many practical scheduling problems have to deal with alternatives
– activities which can choose their resource, or activities which exist only if a
particular alternative of processing is chosen. From the resource point of view,
it is not yet decided whether such activities will be processed or not. Therefore
we will call such activities optional. For an optional activity, we would like to
speculate what would happen if the activity actually would be processed by the
resource.

Traditionally, resource constraints are not designed to handle optional activ-
ities properly. However, several different modifications are used to model them:

Dummy activities. It is basically a workaround for constraint solvers which
do not allow to add more activities on the resource during problem solving
(i.e. resource constraint is not dynamic [3]). Processing time of activities is
turned from constants to domain variables. Several “dummy” activities with
processing time domain 〈0, ∞) are added on the resource as a reserve for
possible activity addition. Filtering algorithms work as usual, but they use
minimum of possible processing time instead of original constant processing
time. Note that dummy activities have no influence on other activities on
the resource, because their processing time can be zero. Once an alternative
is chosen, a dummy activity is turned into regular activity (i.e. minimum of
processing time is no longer zero). In this approach, an impossibility of an
alternative cannot be found before that alternative is actually tried.

Filtering of options. The idea is to run a filtering algorithm several times,
each time with one of the optional activities added on the resource. When a
fail is found, then the optional activity is rejected. Otherwise time bounds
of the optional activity can be adjusted. [4] introduces so called PEX-edge-
finding with time complexity O(n3). This is a pretty strong propagation,
however rather time consuming.

Modified filtering algorithms. Regular and optional activities are treated
differently: optional activities do not influence any other activity on the re-
source, however regular activities influence other regular activities and also
optional activities [6]. Most of the filtering algorithms can be modified this
way without changing their time complexities. However, this approach is
a little bit weaker than the previous one, because previous approach also
checked whether the addition of a optional activity would not cause an im-
mediate fail.

Cumulative resources. If we have a set of similar alternative machines, this
set can be modeled as a cumulative resource. This additional (redundant)
constraint can improve the propagation before activities are distributed be-
tween the machines. There is also a special filtering algorithm [11] designed
to handle this type of alternatives.

To handle optional activities we extend each activity i by a variable called
existencei with the domain {true, false}. When existencei = true then i is a
regular activity, when existencei ∈ {true, false} then i is an optional activity.
Finally when existence = false we simply exclude this activity from all our
considerations.

To make the notation concerning optional activities easy, let R be the set of
all regular activities and O the set of all optional activities.

For optional activities, we would like to consider the following issues:

1. If an optional activity should be processed by the resource (i.e. if an optional
activity is changed to a regular activity), would the resource be overloaded?
The resource is overloaded if there is such a set Ω ⊆ R that:

lctΩ − estΩ < pΩ

Certainly, if a resource is overloaded then the problem has no solution. Hence
if an addition of a optional activity i results in overloading then we can
conclude that existencei = false.

2. If the addition of an optional activity i does not result in overloading, what
is the earliest possible start time and the latest possible completion time of
the activity i with respect to regular activities on the resource? We would
like to apply usual filtering algorithms for the activity i, however the activity
i cannot cause change of any regular activity.

3. If we add an optional activity i, will the first run of a filtering algorithm
result in a fail? For example algorithm detectable precedences can increase
estk of some activity k so much that estk + pk > lctk. In that case we can
also propagate existencei = false.

We will consider the item 1 in the next section “Overload Checking with Optional
Activities”. Items 2 and 3 are discussed in section “Filtering with Optional
Activities”.

4 Overload Checking with Optional Activities

Let us consider an arbitrary set Ω ⊆ R of regular activities. Overload rule says
that if the set Ω cannot be processed within its time bounds then no solution
exists:

lctΩ − estΩ < pΩ ⇒ fail

Let us suppose for a while that we are given an activity i ∈ T and we want to
check this rule only for those sets Ω ⊆ T which have lctΩ = lcti. Now consider

a set Θ:

Θ = {j, j ∈ R & lctj ≤ lcti}

Overloaded set Ω with lctΩ = lcti exists if and only if ECTΘ > lcti = lctΘ. The
idea of an algorithm is to gradually increase the set Θ by increasing the lctΘ .
For each lctΘ we check whether ECTΘ > lctΘ or not.

But what about optional activities? Let Λ be the following set:

Λ = {j, j ∈ O & lctj ≤ lcti}

An optional activity can cause overloading if and only if ECT(Θ, Λ) > lcti. The
following algorithm is an extension of the algorithm presented in [10]. Optional
activities are represented by gray nodes in the Θ-Λ-tree.

The following algorithm deletes all optional activities k such that an addition
of each activity k alone causes an overload. Of course, a combination of several
optional activities that are not deleted may still cause an overload!

(Θ, Λ) := (∅, ∅) ;
for i ∈ T in ascending order of lcti do begin

i f i is a regular activity then begin
Θ := Θ ∪ {i} ;
i f ECTΘ > lcti then

f a i l ; {No solution exists}
end else

Λ := Λ ∪ {i} ;

while ECT(Θ, Λ) > lcti do begin

k := optional activity responsible for ECT(Θ, Λ) ;
existencek := false ;
Λ := Λ \ {k} ;

end ;
end ;

The complexity of the algorithm is again O(n log n). The inner while loop is
repeated n times maximum because each time an activity is removed from the
set Λ. Outer for loop has also n iterations, time complexity of each single line is
O(log n) maximum (see the table 1).

5 Filtering with Optional Activities

The following section is an example how to extend a certain class of filtering algo-
rithms to handle optional activities. The idea is simple: if the original algorithm
uses Θ-tree, we will use Θ-Λ-tree instead. The difference is that we represent
optional activities by gray nodes. For propagation we still use ECTΘ, however
we can check ECT(Θ, Λ) also. If propagation using ECT(Θ, Λ) would result in
an immediate fail we can exclude the optional activity responsible for that.

Let us demonstrate this idea on the detectable precedences algorithm:

(Θ, Λ) := ∅ ;
Q := queue of all activities j ∈ T in ascending order of lctj − pj ;

for i ∈ T in ascending order of esti + pi do begin
while esti + pi > lctQ.first − pQ.first do begin

i f i is a regular activity then
Θ := Θ ∪ {Q.first} ;

else
Λ := Λ ∪ {Q.first} ;

Q. dequeue ;
end ;

est′i := max
{

esti, ECTΘ\{i}

}

;
i f i is a regular activity then

while ECT(Θ \ {i} , Λ) + pi > lcti then begin

k := an optional activity responsible for ECT(Θ \ {i} , Λ) ;
Λ := Λ \ {k} ;
existencek := false ;

end ;
end ;
for i ∈ T do

esti := est′i ;

The complexity of the algorithm remains the same: O(n log n).
The same idea can be used to extend the not-first/not-last algorithm pre-

sented in [10]. However, extending the edge-finding algorithm is not so easy:
edge-finding algorithm already uses Θ-Λ-tree. We will consider this in our future
work.

6 Experimental Results

We tested the new edge-finding algorithm on several benchmark jobshop prob-
lems taken from OR library [1]. The benchmark problem is to compute a de-
structive lower bound using the shaving technique. Destructive lower bound is
the minimal makespan for which propagation is not able to find conflict without
backtracking. Because destructive lower bound is computed too quickly, we use
also shaving as suggested in [7]. Shaving is similar to the proof by a contradiction.
We choose an activity i, limit its esti or lcti and propagate. If an infeasibility
is found, then the limitation was invalid and so we can decrease lcti or increase
esti. Binary search is used to find the best shave. To limit CPU time, shaving
was used for each activity only once.

Table 2 shows the results. We measured the CPU3 time needed to prove
the lower bound, i.e. the propagation is done twice: with the upper bound LB
and LB-1. Times T1–T3 show running time for different implementations of the
edge-finding algorithm: T1 is the new algorithm, T2 is the algorithm [7] and

3 Benchmarks were performed on Intel Pentium Centrino 1300MHz

T3 is the algorithm [8]. As can be seen, the new algorithm is quite competitive
for n = 10 and n = 15, for n ≥ 20 it is faster than the other two edge-finding
algorithms.

Prob. Size LB T1 T2 T3

abz5 10 x 10 1196 1.430 1.421 1.466
abz6 10 x 10 941 1.773 1.762 1.815
orb01 10 x 10 1017 1.773 1.783 1.841
orb02 10 x 10 869 1.491 1.486 1.529
ft10 10 x 10 911 1.616 1.618 1.669
la21 15 x 10 1033 0.752 0.784 0.815
la22 15 x 10 925 3.486 3.597 3.763
la36 15 x 15 1267 5.376 5.520 5.768
la37 15 x 15 1397 2.498 2.572 2.667
ta01 15 x 15 1224 9.113 9.304 9.652
ta02 15 x 15 1210 7.097 7.264 7.586
la26 20 x 10 1218 0.749 0.838 0.899
la27 20 x 10 1235 0.908 0.994 1.054
la29 20 x 10 1119 3.357 3.609 3.816
abz7 20 x 15 651 3.283 3.446 3.579
abz8 20 x 15 621 12.00 12.54 13.14
ta11 20 x 15 1295 14.72 15.31 16.03
ta12 20 x 15 1336 17.54 18.30 19.26
ta21 20 x 20 1546 38.43 39.79 41.90
ta22 20 x 20 1501 25.47 26.25 27.37
yn1 20 x 20 816 26.79 27.58 28.91
yn2 20 x 20 842 22.86 23.59 24.69
ta31 30 x 15 1764 4.788 5.485 5.936
ta32 30 x 15 1774 6.515 7.390 7.946
swv11 50 x 10 2983 15.70 19.70 21.62
swv12 50 x 10 2972 19.21 23.43 25.23
ta51 50 x 15 2760 11.68 14.58 15.88
ta52 50 x 15 2756 12.07 15.04 16.32
ta71 100 x 20 5464 131.6 173.6 189.3
ta72 100 x 20 5181 132.0 174.8 190.8

Table 2. Destructive Lower Bounds

Optional activities were tested on modified 10x10 jobshop instances. In each
job, activities on 5th and 6th place were taken as alternatives. Therefore in
each problem there are 20 optional activities and 80 regular activities. Table 3
shows the results. Column LB is the destructive lower bound computed without
shaving, column Opt is the optimal makespan. Column CH is the number of
choicepoints needed to find the optimal solution and prove the optimality (i.e.
optimal makespan used as the initial upper bound). Finally the column T is the
CPU time in seconds.

As can be seen in the table, propagation is strong, all of the problems were
solved surprisingly quickly. However more test should be made, especially on
real life problem instances.

Prob. Size LB Opt CH T

abz5-alt 10 x 10 1031 1093 283 0.336

abz6-alt 10 x 10 791 822 17 0.026

orb01-alt 10 x 10 894 947 9784 12.776

orb02-alt 10 x 10 708 747 284 0.328

ft10-alt 10 x 10 780 839 4814 6.298

la16-alt 10 x 10 838 842 27 0.022

la17-alt 10 x 10 673 676 24 0.021

la18-alt 10 x 10 743 750 179 0.200

la19-alt 10 x 10 686 731 84 0.103

la20-alt 10 x 10 809 809 14 0.014

Table 3. Alternative activities

Acknowledgements: Authors would like to thank all the anonymous referees
for their helpful comments and advises. This work has been supported by the
Czech Science Foundation under the contract no. 201/04/1102.

References

[1] OR library. URL http://mscmga.ms.ic.ac.uk/info.html.
[2] Philippe Baptiste and Claude Le Pape. Edge-finding constraint propagation

algorithms for disjunctive and cumulative scheduling. In Proceedings of the
Fifteenth Workshop of the U.K. Planning Special Interest Group, 1996.

[3] Roman Barták. Dynamic global constraints in backtracking based environ-
ments. Annals of Operations Research, 118:101–118, 2003.

[4] J. Christopher Beck and Mark S. Fox. Scheduling alternative activities. In
AAAI/IAAI, pages 680–687, 1999.

[5] Jacques Carlier and Eric Pinson. Adjustments of head and tails for the
job-shop problem. European Journal of Operational Research, 78:146–161,
1994.

[6] F. Focacci, P. Laborie, and W. Nuijten. Solving scheduling problems with
setup times and alternative resources. In Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning and Scheduling, 2000.

[7] Paul Martin and David B. Shmoys. A new approach to computing opti-
mal schedules for the job-shop scheduling problem. In W. H. Cunningham,
S. T. McCormick, and M. Queyranne, editors, Proceedings of the 5th In-
ternational Conference on Integer Programming and Combinatorial Opti-
mization, IPCO’96, pages 389–403, Vancouver, British Columbia, Canada,
1996.

[8] Claude Le Pape Philippe Baptiste and Wim Nuijten. Constraint-Based
Scheduling: Applying Constraint Programming to Scheduling Problems.
Kluwer Academic Publishers, 2001.

[9] Philippe Torres and Pierre Lopez. On not-first/not-last conditions in dis-
junctive scheduling. European Journal of Operational Research, 1999.

[10] Petr Viĺım. O(n log n) filtering algorithms for unary resource constraint. In
Proceedings of CP-AI-OR 2004. Springer-Verlag, 2004.

[11] Armin Wolf and Hans Schlenker. Realizing the alternative resources con-
straint problem with single resource constraints. In To appear in proceedings
of the INAP workshop 2004, 2004.

Appendix

7 Equivalence of the Edge-Finding Rules

Let us consider an arbitrary set Ω ⊆ T . Overload rule says that if the set Ω

cannot be processed within its time bounds then no solution exists:

lctΩ − estΩ < pΩ ⇒ fail (7)

Note that it is useless to continue filtering when a fail was fired. Therefore
in the following we will assume that the resource is not overloaded.

Proposition 2. The rule (4) is not stronger than the original rules (2) and (3).

Proof. Let us consider a pair of activities i, j for which the new rule (4) holds.
We define a set Ω′ as a subset of Θ(j) ∪ {i} for which:

ECTΘ(j)∪{i} = estΩ′ + pΩ′ (8)

Note that thanks to the definition (1) of ECT such a set Ω ′ must exist.
If i 6∈ Ω′ then Ω′ ⊆ Θ(j), therefore

estΩ′ + pΩ′

(8)
= ECTΘ(j)∪{i}

(4)
> lctj ≥ lctΩ′

So the resource is overloaded (see the overload rule (7)) and fail should have
already been fired.

Thus i ∈ Ω′. Let us define Ω = Ω′ \{i}. We will assume that Ω 6= ∅, because
otherwise esti ≥ ECTΘ(j) and rule (4) changes nothing. For this set Ω we have:

min {estΩ , esti} + pΩ + pi = estΩ′ + pΩ′

(8)
= ECTΘ(j)∪{i}

(4)
> lctj ≥ lctΩ

Hence the rule (2) holds for the set Ω. To complete the proof we have to show
that both rules (3) and (4) adjust esti equivalently, i.e. ECTΩ = ECTΘ(j). We

already know that ECTΩ ≤ ECTΘ(j) because Ω ⊆ Θ(j). Suppose now for a
contradiction that

ECTΩ < ECTΘ(j) (9)

Let Φ be a set Φ ⊆ Θ(j) such that:

ECTΘ(j) = estΦ + pΦ (10)

Therefore:

estΩ + pΩ ≤ ECTΩ

(9)
< ECTΘ(j)

(10)
= estΦ + pΦ (11)

Because the set Ω′ = Ω∪{i} defines the value of ECTΘ(j)∪{i} (i.e. estΩ′ + pΩ′ =
ECTΘ(j)∪{i}), it has the following property (see the definition (1) of ECT):

∀k ∈ Θ(j) ∪ {i} : estk ≥ estΩ′ ⇒ k ∈ Ω′

And because Ω = Ω′ \ {i}:

∀k ∈ Θ(j) : estk ≥ estΩ′ ⇒ k ∈ Ω (12)

Similarly, the set Φ defines the value of ECTΘ(j):

∀k ∈ Θ(j) : estk ≥ estΦ ⇒ k ∈ Φ (13)

Combining properties (12) and (13) together we have that either Ω ⊆ Φ (if
estΩ′ ≥ estΦ) or Φ ⊆ Ω (if estΩ′ ≤ estΦ). However, Φ ⊆ Ω is not possible,
because in this case estΦ + pΦ ≤ ECTΩ what contradicts the inequality (11).
The result is that Ω (Φ, and so pΩ < pΦ.

Now we are ready to prove the contradiction:

ECTΘ(j)∪{i}
(8)
= estΩ′ + pΩ′

= min {estΩ , esti} + pΩ + pi because Ω = Ω′ \ {i}

= min {estΩ + pΩ + pi, esti + pΩ + pi}

< min {estΦ + pΦ + pi, esti + pΦ + pi} by (11) and pΩ < pΦ

≤ ECTΘ(j)∪{i} because Φ ⊆ Θ(j)

ut

