
Computing Explanations for the Unary

Resource Constraint

Petr Viĺım

Charles University
Faculty of Mathematics and Physics

Malostranské náměst́ı 2/25, Praha 1, Czech Republic
vilim@kti.mff.cuni.cz

Abstract. Integration of explanations into a CSP solver is a technique
addressing difficult question “why my problem has no solution”. More-
over, explanations together with advanced search methods like directed
backjumping can effectively cut off parts of the search tree and thus
speed up the search.
In order to use explanations, propagation algorithms must provide some
sort of reasons (justifications) for their actions. For binary constraints it
is mostly easy. In the case of global constraints computation of factual
justifications can be tricky and/or computationally expensive.
This paper shows how to effectively compute explanations for the unary
resource constraint. The explanations are computed in a lazy way. The
technique is experimentally demonstrated on job-shop benchmark prob-
lems. The following propagation algorithms are considered: edge-finding,
not-first/not-last and detectable precedences. Speed of these filtering al-
gorithms and speed of the explanation computation is the main interest.

1 Introduction

To show a typical usage of the unary resource constraint, let us consider the
following shop-scheduling problem. We are given a set of machines and a set of
jobs which must be processed. A job consists of a set of operations, each operation
requires exclusive usage exactly one machine. Processing of an operation cannot
be interrupted by any other operation. Exact processing time of each operation
is known in advance. In the case of jobshop problem, operations in a job must
be processed in a certain order. In openshop an order of operations in a job is
arbitrary. The problem is to find a schedule with minimal completion time of all
jobs, i.e. a schedule with minimal makespan.

Shop-scheduling problems can be modeled as a constraint satisfaction prob-
lem (CSP). In this case unary resource1 constraints are typically used as ab-
stractions of machines. In case of openshop, unary resource constraints are also
used to model jobs.

In relation to a resource operations are called activities. Each activity i has
following requirements:

1 In this paper, a resource always denotes a unary resource.



– earliest possible starting time esti

– latest possible completion time lcti

– processing time pi

A purpose of the resource constraint is to reduce a search space by tightening
the time bounds esti and lcti. This process of elimination of unfeasible values
is called propagation, an actual propagation algorithm is often called filtering
algorithm. Interval 〈esti, lcti〉 is called a time window of the activity i. Thus the
role of the resource constraint can be seen as a process of tightening of these
time windows.

There are several filtering algorithms for unary resources, in this paper we
focus on the edge-finding [7, 8], not-first/not-last [10, 9, 3] and detectable prece-
dences [10]. Each of these algorithms filters out different inconsistent values,
therefore these algorithms can be used together to achieve better pruning.

There are only a few attempts to combine explanations with unary resource
constraint. The author is aware of the paper [6] where Guéret et. al. solved
several open openshop problems using explanations. This result was achieved by
very simple explanations for unary resource constraints. This paper focuses on
computing more accurate explanations. In paper [2] explanations are used for
solving dynamic schedule problems.

This paper differs from the previous work in two main aspects: explanations
are computed in a lazy way and justifications are very tightly connected with
filtering algorithms. This way the computation is very fast and resulting expla-
nations are more accurate.

2 Explanations

The purpose of the explanation is to capture a reason why a search (sub)tree
failed. Advanced search methods (directed backjumping, dynamic backtracking
[5]) can exploit such information and speed up the search. The idea is to identify
a reason of fail and cut off other branches of the search tree which are known to
fail for the same reason.

An explanation has to describe all properties of the subproblem which leads
to the infeasibility. This way the explanation can be seen as a relaxation of
the original unfeasible subproblem. The important point is that this relaxation
remains unfeasible. Our intention is to find as general relaxation (explanation)
as possible. More general explanation can cover more subproblems and dismiss
them as unsolvable.

Let us precisely define a specific type of explanations which is used in this
paper:

Definition 1. An fail explanation is an unfeasible CSP2 which is a relaxation
of the current search node. The explanation consists of:

2 Constraint Satisfaction Problem



1. A subset Υ of initial constraints and search decision constraints valid in the
current search node.

2. Conflict windows 〈esti, lcti〉 for activities. A conflict window for an activity
i is a superset of the current time window: 〈esti, lcti〉 ⊆ 〈esti, lcti〉. I.e. the
conflict window is a relaxation of the current time window.

If no conflict window is given for an activity i then we consider the time
window to be 〈−∞, ∞〉.

The idea of this definition follows. In explanation we relax constraints which
are not in the set Υ . We also relax domains by replacing time windows by conflict
windows. And still the problem remains unfeasible. Conflict window 〈−∞, ∞〉
is special, it says that the activity is irrelevant: can be processed at any time
and yet the problem has no solution.

The explanation can be compared with state in any other search node. A
problem has no solution as long as all constraints from the set Υ remain in the
system and all time windows are covered by associated conflict windows.

i

piesti lcti
esti lcti

Fig. 1. Activity i, its time window and conflict window.

b

estb

lctb
a

esta

lcta
esta = estb lcta = lctb

Fig. 2. Two activities a and b in conflict, their time windows and conflict windows.

2.1 Initial Explanation

When propagation comes to a dead end, an initial explanation must be com-
puted. This initial explanation simply describe the reason of the fail which was
found.

For shop-scheduling problems, the usual reason why propagation generates
fail is overloading. Let us consider a subset Ω ⊆ T of activities on one resource.
We can define processing time, earliest starting time and latest completion time



of the set Ω as:

estΩ = min{esti, i ∈ Ω}

lctΩ = max{lcti, i ∈ Ω}

pΩ =
∑

i∈Ω
pi

All activities from the set Ω must be processed during the interval 〈estΩ , lctΩ〉.
However, if pΩ > lctΩ − estΩ then no solution exists. Empty domain for an
activity i is a special case of overloading for Ω = {i}.

The explanation for overloading consists of the unary resource constraint and
conflict windows for activities i ∈ Ω. These conflict windows can be 〈estΩ , lctΩ〉.
However conflict windows can be little bit wider, as long as lcti − esti ≤ pΩ −1.
Let ∆ is defined as:

∆ = pΩ −(lctΩ − estΩ) − 1

Conflict windows for i ∈ Ω can be set the following way:

〈

estΩ −
⌊∆

2

⌋

, lctΩ +
⌈∆

2

⌉〉

2.2 Justifications

It is likely that the infeasibility of the problem cannot be simply detected by
the overloading. Some propagation or even search must be done first. Initial
explanation provided by overloading is just a beginning. The explanation must
be refined during the way back in the search tree.

For this purpose, a justification must be remembered for each domain reduc-
tion. The justification captures the reason which justifies the realized reduction:

Definition 2. Justification is a CSP which is a relaxation of the state just before
the reduction. Filtering algorithm would generate exactly the same reduction for
the relaxed CSP as for the original one.

Justification consists of the propagated constraint and a set of conflict win-
dows.

Justifications are written on the stack during constraint propagations and
used for explanation (re)computation during way back in the search tree. Nat-
urally, we are looking for as general justification as possible – more general
justifications result in the more general explanation.

Let us describe more formally how justifications are used to refine explana-
tions during way back in the backtrack:

1. Once a fail is found, an initial explanation is created.
2. One by one the reductions made by the constraint propagation are undone

in the reverse order than they were originally made. For that, all realized
reductions and their justifications are stored in a stack.



failed child failed child

propagation,

recording justifications

way back,

explanation recomputation

choicepoint,

combining explanations

Fig. 3. Operations on the search tree

3. After undoing a particular reduction, it can happen that the explanation
is not the relaxation of the current problem any more. For example esti

may become greater than esti and thus the conflict window does not cover
the time window any more. In that case, the explanation must be repaired
using the justification associated with the undone reduction. It is done in
the following way:

i. esti is set to −∞.
ii. Constraint which generated the reduction is added into the explanation:

Υ := Υ ∪ {c}.
iii. Conflict windows from the justification are “merged” into the conflict

windows of the explanation. Let 〈est′k, lct′k〉 be the conflict window for
the activity k in the justification. Then the resulting conflict window for
the activity k in the explanation is:

〈estk, lctk〉 := 〈max{estk, est′k}, min{lctk, lct′k}〉

4. In a choicepoint, the explanation is a combination of explanations from all
child nodes. For example, let us suppose that the branching was done by
addition of a constraint a in the first child node and the negation of this
constraint ¬a in the second child node. The resulting explanation consists
of:

i. Subset of current constraints Υ :

Υ =
(

Υ a \ {a}
)

∪
(

Υ¬a \ {¬a}
)

ii. Conflict windows for activities 〈estk , lctk〉:

〈estk, lctk〉 := 〈max{estak, est¬a
k }, min{lctak, lct¬a

k }〉

Justifications are similar to explanations, however justifications are much
more simple. For each particular filtering algorithm, justification can be held
in a specialized data structure which exploit a particular method of filtering.
Detailed descriptions of justifications for different algorithms are provided in
following sections 4–7.



3 Directed Backjumping

Before going into details about justifications, let us show how to implement
directed backjumping using explanations.

Consider a the choicepoint from the item 4 above. If a 6∈ Υ a then the ex-
planation for the first branch a is valid also for the second branch ¬a. And
so the second branch can be skipped because it would fail anyway. This way,
explanations can speed up the search.

4 Precedence Justification

Together with resource constraint, binary precedence constraints are used to
model shop-scheduling problems. A precedence constraint i � j assures that
the activity i finish before the activity j starts. Precedence constraints can be
used to model ordering of operations within a job in jobshop. They are also often
used as search decisions.

Let us introduce a notation convention. Whenever a reduction of a domain is
made (i.e. esti is increased or lcti is decreased), then esti and lcti denote values
before the reduction, est′i and lct′i denote values after the reduction.

Propagation of the precedence constraint i � j is quite simple: whenever
esti is increased, the constraint propagates this change into the value estj :

est′j := max{estj , esti + pi} (1)

Similarly, when lctj is decreased, lcti can be adjusted:

lct′i := min{lcti, lctj − pj} (2)

All propagation algorithms considered in this paper have two symmetric ver-
sions. One of them increase values esti (in this case the rule (1)), the second one
decrease values lcti (the rule (2)). Since propagation algorithms and their justi-
fications are symmetrical, we will always consider only one of these symmetric
versions – the one which changes esti.

Justification for a reduction made by the rule (1) is quite simple: precedence
constraint itself and the conflict window 〈esti, ∞〉 for the activity i.

Now let us now focus on the usage of such justification. Explanation must
be recomputed only if3 estj < estj . In that case, explanation is recomputed the
following way:

i. Precedence constraint i � j is added into the explanation.
ii. esti must be changed. According to justification it is enough to set esti :=

esti. However, it is possible that estj < est′j , i.e. to put the activity j into
the conflict, it is enough to increase estj to estj . Thus it is enough to set
esti := estj − pi.

iii. Conflict window of the activity j is enlarged: estj := −∞.

Recording and using one justification for a precedence constraint has both
time complexity and space complexity O(1).

3 Note that estj is value before the reduction, i.e. the value after undo of this reduction.



5 Not-First/Not-Last Justifications

Filtering algorithm not-first/not-last [10, 3, 9] is based on the following rule not-
first and its symmetric variant not-last. Let us consider an activity i and a set
Ω ⊂ T such that the activity i cannot start before the set Ω. We denote such
property i 6� Ω:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) : lctΩ − esti < pΩ + pi ⇒ i 6� Ω (3)

If i 6� Ω, some activity j from the set Ω must finish before the activity i can
start. This allows to increase esti:

i 6� Ω ⇒ est′i := max
{

esti, min
{

estj + pj , j ∈ Ω
}}

(4)

A justification for such change of esti must guarantee that if all activities
remain inside conflict windows, inequality (3) remains valid and the value est′i
in the rule (4) remains the same or it is even greater.

The inequality (3) remains valid as long as lctΩ does not increase too much.
Hence for each activity j in the set Ω, the bound of the conflict window lctj

must fulfill the following inequality:

∀j ∈ Ω : lctj < esti + pΩ + pi

Similarly, as long as min{estj + pj , j ∈ Ω} does not decrease, the rule (4)
still justifies the reduction. Therefore:

∀j ∈ Ω : estj ≥ est′i − pj

To fulfill both last inequalities, the conflict windows for activities from the
set Ω are assigned in the following way:

∀j ∈ Ω : 〈est′i − pj , esti + pΩ + pi −1〉

Also, the conflict window 〈esti,∞〉 must be assigned to the activity i.

Just constructed justification has time and space complexity O(n) because
all activities from the set Ω must be enumerated into the justification. However,
only some special types of sets Ω can be considered in order to find all reductions
resulting from the rule not-first.

Let us consider one particular reduction according to the rule not-first (3),
(4). Let Ψ be the set constructed the following way:

Ψ = {j, j ∈ T & estj + pj ≥ est′i & lctj ≤ lctΩ & j 6= i} (5)

If we exchange the set Ω by the set Ψ in the rules (3) and (4), these rules would
raise exactly the same change of the esti. In fact, all not-first algorithms [10, 3, 9]
consider only sets in this form. I.e. whenever a change of a esti is made, Ω = Ψ .

Thanks to this special form of the set Ω, the set Ω can be characterized only
by the values est′i and lctΩ . Using the rule (5), the set Ω can be reconstructed



in time O(n). Thus the justification has size only O(1) and can be recorded
in the time O(1). All three not-first/not-last algorithms [10, 3, 9] can be easily
modified to record such justifications without changing their time complexities,
i.e. O(n log n) for [10] and O(n2) for [9, 3].

Usage of each one not-first justification takes time O(n). One run of the
not-first algorithm can generate only n changes maximum. Thus the way back
“through” the not-first/not-last propagation takes O(n2) maximum. In addition,
a lot of justifications can be skipped because they do not interfere with the
current explanation (i.e. esti ≥ esti).

Finally, let us consider usage of a not-first justification. Let us suppose that
esti < esti. I.e. we are in a situation when the current explanation is valid
after the change (i.e. esti ≤ est′i), but not before it. Thus some repair of the
current explanation is necessary. The justification captures the reason why esti

was increased to est′i. However in order to make the current explanation valid, it
may not be necessary to increase the esti so much. It is enough to increase esti

to esti. I.e. the justification can be weakened before it is merged into the current
explanation. This weakening can be achieved by using esti instead of est′i in all
conflict windows.

6 Edge-Finding Justifications

Edge-finding is well known filtering algorithm for unary resource constraint. The
algorithm is based on the following rules (6), (7) and their symmetric versions
[3, 7]. Consider a set Ω ⊆ T and an activity i 6∈ Ω. The activity i has to be
scheduled after all activities from the set Ω if:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) : min {estΩ , esti} + pΩ + pi > lctΩ ⇒ Ω � i (6)

The reason follows: if the activity i is not scheduled after the set Ω then the last
activity from the set Ω cannot finish before min {estΩ , esti} + pΩ + pi, what is
more than the allowed maximum lctΩ .

Once it is known that the activity i must be scheduled after the set Ω, esti

can be adjusted:

Ω � i ⇒ est′i := max {esti, ECTΩ} (7)

Where ECTΩ denotes a lower bound of the earliest completion time of a set Ω.
ECTΩ is defined by the following formula:

ECTΩ = max {estΩ′ + pΩ′ , Ω′ ⊆ Ω} (8)

There are several implementations of edge-finding algorithm, [4] presents a
O(n log n) algorithm, another two O(n2) algorithms can be found in [7, 8].

We are interested in providing justifications for reductions made by edge-
finding. Naturally, a justification consists of the unary resource constraint itself
and some set of conflict windows. These conflict windows have to assure, that



while the time windows of activities remain inside the conflict windows, the
reduction made according to the rules (6) and (7) would be at least the same.

Lets start with the inequality (6). There are several ways how to extent time
windows to conflict windows. Lets look at one of them: we allow an extension
only on the right side of the time windows. Thus to satisfy the inequality (6),
the conflict windows can be:

∀j ∈ Ω : 〈r, r + pΩ + pi −1〉 (9)

i : 〈r, ∞〉

where r = min {estΩ , esti}.
Sure, such conflict windows are not sufficient for the rule (7). This rule de-

mands that for one particular set Ω′ ⊆ Ω, the value estΩ′ remains the same:
estΩ′ = est′i − pΩ′ . Putting that together with previous conflict windows (9), the
final conflict windows are:

∀j ∈ Ω′ : 〈est′i − pΩ′ , r + pΩ + pi −1〉

∀j ∈ (Ω \ Ω′) : 〈r, r + pΩ + pi −1〉

i : 〈r, ∞〉

These conflict windows are sufficient for both rules (6) and (7).

Enumeration all activities from the set Ω in the explanation would again slow
down the justification generation to O(n). Fortunately, a trick similar to not-first
justification can be used here. Let us consider one particular reduction of esti.
Let the set Ω′ be such a subset of the set Ω that ECTΩ = estΩ′ + pΩ′ . Note
that the set Ω′ must exists thanks to the definition (8) of the ECTΩ . Further,
let the sets Φ and Θ are defined the following way:

Φ = {j, j ∈ T & estΩ ≤ estj & lctj ≤ lctΩ}

Θ = {j, j ∈ T & estΩ′ ≤ estj & lctj ≤ lctΩ}

These sets are in the form of so called task intervals. We can use the set Φ in the
rule (6) instead of the set Ω and the inequality stays holding. The set Θ can be
used to estimate a lower bound of ECTΦ:

Θ ⊆ Φ ⇒ ECTΦ ≥ estΘ + pΘ ⇒ est′i ≥ max{esti, estΘ + pΘ}

Because estΘ = estΩ′ and pΘ ≥ pΩ′ :

ECTΩ = estΩ′ + pΩ′ ≤ estΘ + pΘ

Therefore the set Ω can be replaced by the set Φ in the justification and the set
Ω′ can be replaced by the set Θ. In fact, edge-finding algorithms consider only
sets Ω and Ω′ in a form of task intervals, i.e. Ω = Φ and Ω′ = Θ.

Thus the result is very similar to the not-first justification. Instead of the
enumeration of the sets Ω and Ω′ in the justification, it is sufficient to record
only the values estΩ , lctΩ and estΩ′ . Both the sets can be reconstructed from



these values within the time complexity O(n). The justification has size only
O(1) and can be recorded in time O(1). Both edge-finding algorithm [7, 8] can be
easily modified to generate justifications without changing their time complexity
O(n2).

Before using the justification, we can weaken it the same way as not-first
justification: it is not necessary to increase esti to est′i to reach the infeasibility.
Sufficient value of est′i is esti. However this time we must be more careful. Simple
replacement of est′i by esti in the definition of the conflict windows leads to invalid
justifications. Conflict windows for the activities j ∈ Ω′ should be:

∀j ∈ Ω′ : 〈max {esti − pΩ′ , r} , r + pΩ + pi −1〉

This way the conflict window cannot run out from the conflict interval (9).

7 Justifications for Detectable Precedences

Detectable precedences is another propagation algorithm which can be used
together with the edge-finding and not-first/not-last [10]. Let i and j be two
different activities on the same resource. The precedence j � i is said to be
detectable, if the following inequality holds:

esti + pi > lctj − pj (10)

Simply when the previous inequality holds then it is not possible to schedule
the activity i before the activity j. The filtering algorithm builds a set Θ of all
activities j, which precede the activity i according to detectable precedences:

Θ = {j, j ∈ T & j � i is detectable}

The activity i cannot start until all of the activities from the set Θ finish, thus
esti can be adjusted:

est′i := max{esti, ECTΘ}

Let Ω′ be a subset of the set Ω such that ECTΩ = estΩ′ + pΩ′ . The justifi-
cation has to assure two things: that Ω′ � i and that the value estΩ′ + pΩ′ does
not decrease. Note that activities from the set Ω \ Ω ′ are not included in the
justification at all.

Lets start with estΩ′ + pΩ′ . Because this value cannot decrease, estj must
fulfill the following inequality:

∀j ∈ Ω′ : estj ≥ estΩ′

Also it has to be assured that Ω′ � i. For each j ∈ Ω′ the precedence j � i

is detectable. And it remains detectable as long as the inequality (10) remains
valid:

esti + pi > lctj − pj



To assure that, conflict windows can be set the following way:

i :

〈

esti −

⌈

∆

2

⌉

, ∞

〉

∀j ∈ Ω′ :

〈

estΩ′ , esti + pi + pj −

⌈

∆

2

⌉

− 1

〉

where ∆ =esti + pi −max
{

lctj − pj , j ∈ Ω′
}

− 1

Again, we do not have to enumerate all activities from the set Ω ′ in the
explanation. The set Ω′ can be easily reconstructed using value estΩ′ . The jus-
tification has space complexity O(1) and it can be recorded within time O(1).
Therefore recording of justifications do not change time complexity of the fil-
tering algorithm. Processing of each relevant justification during way back takes
time O(n).

Like other justifications, a justification for the detectable precedences can be
weakened before it is used. The idea is still the same: to reach the conflict, it is
not necessary to increase esti to est′i, value esti is enough. However this time est′i
does not occur in the conflict window definition directly. But estΩ′ = est′i − p′

Ω .
Hence conflict windows for the activities j from the set Ω ′ can be enlarged the
following way:

∀j ∈ Ω′ :

〈

esti − pΩ′ , esti + pi + pj −

⌈

∆

2

⌉

− 1

〉

8 Experimental Results

The ideas presented in this paper were implemented in a C++ jobshop solver.
Several jobshop problems of sizes 10x10 to 15x15 from the OR library [1] were
used as a benchmark problems. The task is to find and prove the minimal
makespan. Problems were solved using backtracking with directed backjump-
ing based on explanations.

In order to make number of backtracks small, initial upper bound was set to
the known optimal makespan. The solver has to find a solution first and then
prove that there is no better solution.

The experiments shows that computation of explanation is very fast, it takes
only 3–5% of the CPU time. The reason follows: propagation algorithms find a
reduction only in 4–31% of runs (exact ratio depends on the filtering algorithm
and an order in which the algorithms are called). From the recorded justifica-
tions, only 25–80% are really used (again, the ratio depends on the filtering
algorithm).

The problems were solved twice. First time using explanations, second time
without it. Tables 2 and 1 show the results. Columns CH1 and CH2 are number
of choicepoints (i.e. nodes of a search tree without leaves), columns T1 and T2
shows the computation time.



Problem Size Makespan CH1 CH2 CH Saving T1 T2 T Saving

ft10 10x10 930 11478 14192 19.12% 13.112s 16.068s 18.40%

abz5 10x10 1234 5294 6445 17.86% 5.358s 6.538s 18.05%

abz6 10x10 943 3033 3807 20.33% 3.025s 4.077s 25.80%

la16 10x10 945 119 151 21.19% 0.147s 0.189s 22.22%

la17 10x10 784 26 27 3.70% 0.045s 0.045s 0.00%

la18 10x10 848 2429 2641 8.00% 2.422s 2.697s 10.20%

la19 10x10 842 14107 14989 5.89% 14.910s 16.058s 7.15%

la20 10x10 902 2623 2912 9.92% 2.812s 3.220s 12.67%

la36 15x15 1268 962 33749 97.15% 2.556s 40.214s 93.64%

la37 15x15 1397 61 61 0.00% 0.158s 0.157s -0.64%

orb01 10x10 1059 16268 17137 5.07% 19.808s 20.927s 5.35%

orb02 10x10 888 10937 13818 20.85% 11.987s 15.348s 21.90%

orb03 10x10 1005 44152 50820 13.12% 48.051s 55.384s 13.24%

orb04 10x10 1005 1220 1319 7.50% 1.525s 1.618s 5.75%

orb05 10x10 887 2587 3312 21.89% 2.717s 3.587s 24.26%

orb06 10x10 1010 9838 10397 5.38% 11.709s 12.337s 5.09%

orb07 10x10 397 16476 20745 20.58% 16.251s 21.231s 23.46%

orb08 10x10 899 15 15 0.00% 0.039s 0.037s -5.41%

orb09 10x10 934 491 515 4.66% 0.615s 0.641s 4.06%

Table 1. Jobshop instances: first branching strategy

Note that not all explanation computation was excluded in the second run.
However, as said before, no more than 3–5% time could be saved by that.

Two different branching schemes were used to show the influence of the
branching strategy to the directed backjumping:

1. The first branching strategy finds a resource with a smallest slack time. Then
all yet unscheduled activities on the resource are taken and branching is done
on a decision which of them will be the first. For results, see table 1.

2. The second branching strategy is taken from [11]. The resource with the
relatively smallest slack is taken and branching is done by ordering two
longest unordered activities on this resource. The results are in the table 2.

As can be seen, in case of quickly solvable instances (∼ 1000 choicepoints)
backjumping does not significantly improve the performance. However for harder
instances, the savings of time and choicepoints reach 20% for the first branching
strategy and 40% for the second branching strategy. The problem la36 in table
1 is quite exceptional: 97.15% of choicepoints are eliminated.

9 Conclusions and Further Work

Experimental results shows that explanations can significantly speed up the
search, especially for hard problems. Also lazy computation of explanations
seams to be quite effective.

In the future work we would like to explore more advanced search methods:
dynamic backtracking, MAC-DBT or decision-repair.

Another technique often used to prune a search space is shaving [7]. For
scheduling problems, shaving turned out to be quite effective. It could be inter-
esting to combine explanations with shaving.



Problem Size Makespan CH1 CH2 CH Saving T1 T2 T Saving

ft10 10 x 10 930 5931 6246 5.05% 4.928s 5.255s 6.23%

abz5 10 x 10 1234 2188 2963 26.16% 1.500s 2.093s 28.34%

abz6 10 x 10 943 840 863 2.67% 0.618s 0.659s 6.23%

la16 10 x 10 945 1025 1231 16.74% 0.604s 0.786s 23.16%

la17 10 x 10 784 45 45 0% 0.037s 0.037s 0%

la18 10 x 10 848 828 838 1.20% 0.606s 0.626s 3.20%

la19 10 x 10 842 5088 5447 6.60% 3.783s 4.085s 7.40%

la20 10 x 10 902 1353 1369 1.17% 1.076s 1.096s 1.83%

la36 15 x 15 1268 2636 2890 8.79% 5.477s 6.123s 10.56%

la37 15 x 15 1397 2554 6398 60.09% 2.869s 6.763s 57.58%

la39 15 x 15 1233 251 276 9.06% 0.554s 0.597s 7.21%

la40 15 x 15 1222 23606 26408 10.62% 49.816s 56.019s 11.08%

orb01 10 x 10 1059 5214 5220 0.12% 4.903s 4.931s 0.57%

orb02 10 x 10 888 3200 3448 7.20% 2.339s 2.620s 10.73%

orb03 10 x 10 1005 12603 12699 0.76% 10.214s 10.422s 2.00%

orb04 10 x 10 1005 1938 1969 1.58% 1.584s 1.658s 4.47%

orb05 10 x 10 887 1625 1771 8.25% 1.134s 1.248s 9.14%

orb06 10 x 10 1010 6145 6618 7.15% 4.493s 4.867s 7.69%

orb07 10 x 10 397 2066 2190 5.67% 1.552s 1.673s 7.24%

orb08 10 x 10 899 45 45 0% 0.040s 0.041s 2.44%

orb09 10 x 10 934 532 535 0.57% 0.443s 0.451s 1.78%

orb10 10 x 10 944 146 146 0% 0.157s 0.160s 1.88%

ta04 15 x 15 1175 115525 185278 37.65% 2m 33s 4m 12s 39.42%

ta07 15 x 15 1227 763719 1290715 40.83% 20m 10s 35m 47s 43.67%

la38 15 x 15 1196 1381989 1596715 13.45% 37m 57s 45m 34s 16.71%

Table 2. Jobshop instances: second branching strategy

References

[1] OR library. URL http://mscmga.ms.ic.ac.uk/info.html.
[2] Narendra Jussien Abdallah Elkhyari, Chrstelle Guéret. Conflict-based re-

pair techniques for solving dynamic scheduling problems. In Principles
and Prictice of Constraint Programming (CP 2002), pages 702–707, Ithaca,
USA, 2002. Springer-Verlag.

[3] Philippe Baptiste and Claude Le Pape. Edge-finding constraint propagation
algorithms for disjunctive and cumulative scheduling. In Proceedings of the
Fifteenth Workshop of the U.K. Planning Special Interest Group, 1996.

[4] Jacques Carlier and Eric Pinson. Adjustments of head and tails for the
job-shop problem. European Journal of Operational Research, 78:146–161,
1994.

[5] Matthew L. Ginsberg, James M. Crawford, and David W. Ethering-
ton. Dynamic backtracking, 1996. URL http://citeseer.ist.psu.edu/gins-
berg96dynamic.html.

[6] Christelle Guéret, Narendra Jussien, and Christian Prins. Using intelli-
gent backtracking to improve branch and bound methods: an application
to open-shop problems. European Journal of Operational Research, 127(2):
344–354, 2000. ISSN 0377-2217. URL http://www.emn.fr/jussien/publica-
tions/gueret-EJOR00.pdf.

[7] Paul Martin and David B. Shmoys. A new approach to computing opti-
mal schedules for the job-shop scheduling problem. In W. H. Cunningham,
S. T. McCormick, and M. Queyranne, editors, Proceedings of the 5th In-
ternational Conference on Integer Programming and Combinatorial Opti-



mization, IPCO’96, pages 389–403, Vancouver, British Columbia, Canada,
1996.

[8] Claude Le Pape Philippe Baptiste and Wim Nuijten. Constraint-Based
Scheduling: Applying Constraint Programming to Scheduling Problems.
Kluwer Academic Publishers, 2001.

[9] Philippe Torres and Pierre Lopez. On not-first/not-last conditions in dis-
junctive scheduling. European Journal of Operational Research, 1999.

[10] Petr Viĺım. O(n log n) filtering algorithms for unary resource constraint. In
Proceedings of CP-AI-OR 2004. Springer-Verlag, 2004.

[11] Armin Wolf. Better propagation for non-preemptive single-resource con-
straint problems. In Proceedings of the ERCIM/CoLogNet workshop 2004,
2004.


