
Max Energy Filtering Algorithm for Discrete

Cumulative Resources

Petr Viĺım

ILOG, an IBM Company; 9, rue de Verdun, BP 85
F-94253 Gentilly Cedex, France

petr vilim@cz.ibm.com

Abstract. In scheduling using constraint programming we usually rea-
son only about possible start times and end times of activities and remove
those which are recognized as unfeasible. However often in practice there
are more variables in play: variable durations of activities and variable
resource capacity requirements. This paper presents a new algorithm for
filtering maximum durations and maximum capacity requirements for
discrete cumulative resources. It is also able to handle optional interval
variables introduced in IBM ILOG CP Optimizer 2.0. Time complexity
of the algorithm is O(n log n). The algorithm is based on never published
algorithm by Wim Nuijten and a on slightly modified e-feasibility check-
ing algorithm by Armin Wolf and Gunnar Schrader. The later algorithm
is also described in the paper.

Keywords: Constraint Programming, Scheduling, Discrete Cumulative
Resource, Propagation

1 Introduction

Nowadays, constraint based scheduling engines like IBM ILOG CP Optimizer
[1] allows to describe and solve very complex scheduling problems involving a
variety of different constraints. This paper is focused on one of them – discrete
cumulative resource for the case when durations and/or individual capacity re-
quirements are not fixed. Traditionally we reason only about minimum start
times and maximum end times using algorithms like Edge Finding [2], Not-
First/Not-Last [5] or Energetic Reasoning [3]. This paper provides an algorithm
for filtering of maximum activity durations and maximum capacity requirements.

The algorithm is not completely new. Although it was never published, Wim
Nuijten implemented a similar algorithm for ILOG Scheduler several years ago.
The old version of the algorithm has time complexity O(n2), this paper presents
a faster version with time complexity O(n log n).

To demonstrate the problem on a simple example, lets consider the following
subproblem: there is a pool of 10 workers (i.e., a discrete capacity resource with
maximum capacity C = 10) who perform different tasks. Among these tasks
there is a task to produce one particular product P . How many units of the

2 Petr Viĺım

product P is produced depends on how many workers are assigned to the tasks
(i.e., how much capacity of the resource is used) and for how long (i.e., what is
the duration of the task):

nbP = workers× duration

If we do not produce at least 500 units of product P then we will have to buy
the rest for the following cost (deduced from an initial budget):

cost = max(0, 500 − nbP) × 1$

In this example, the budget and production of product P are tightly con-
nected:

1. If we see that no more than 200$ can be invested into the purchase of prod-
uct P (because the rest of the budget is needed for other things) then we
need to allocate workers to produce at least 300 units of product P .

2. On the other hand if we see that there is no way to produce more than 100
units of product P (because the workers are needed for other tasks) we can
immediately allocate 400$ from the budget to buy remaining products P .
This is a critical propagation especially if the budget is short.

Both propagations above are very important for speeding up the search by better
pruning the search tree. However for the propagation 2 it is necessary to be able
to compute the maximum possible production of product P . And this is the
topic of the paper.

The algorithm presented in the paper is also useful if there are optional
activities – activities which may or may not be present in the solution (for
example alternatives between several resources). In this case the algorithm can
detect that there is no way to process an optional activity and therefore it cannot
be present in the solution (and, in case of an alternative, another alternative must
be chosen), see [4, 1].

2 Notation

Let us formalize the problem. There is a set T of n = |T | non-preemptive non-
optional activities. For the first part of the paper we assume that none of the
activities in T is optional, that is, all activities in T are necessarily present in
the solution. After we present Max Energy algorithm for non-optional activities
we will show how to use it for optional activities.

Each activity i ∈ T is described by the following attributes:

– the earliest possible starting time esti ∈ N,
– the latest possible completion time lcti ∈ N,
– the minimum processing time (duration) pi ∈ N,
– the maximum processing time (duration) pi ∈ N.

Max Energy Filtering Algorithm for Discrete Cumulative Resources 3

Moreover, each activity i ∈ T consumes during its processing some capacity of a
resource. The capacity consumption during the whole processing of the activity
is constant, however it may not be known in advance. In this case there is a
range of possible capacity consumption:

– the minimum required capacity ci ∈ N,
– the maximum required capacity ci ∈ N.

The resource can process several activities at the same time, however at any
time the total used capacity cannot exceed the maximum resource capacity C.
For an example see Figure 1.

esti = 0 lcti = 20

i

pi = 4

pi = 10

ci = 2 ci = 1 C = 6

0 5 10 15 20

Fig. 1. An example of an activity i on a resource with capacity C = 6.

Another way to characterize an activity is its energy. Informally, energy of
an activity is:

energy = processingTime× capacity

Because processing time and/or required capacity may be unbound, we charac-
terize the energy of a task i by two numbers: minimum energy ei = ci pi and
maximum energy ei = cipi. The presented algorithm modifies maximum energy
ei and this way also maximum capacity ci and maximum processing time pi:

ci := min {⌊ei/ pi⌋ , ci} (1)

pi := min {⌊ei/ ci⌋ , pi} (2)

2.1 Earliest Completion Time, Energy Envelope

For the following algorithms we need a way to quickly estimate the earliest
completion time of any set of activities Θ ⊆ T . If Θ contains only one activity i
then the computation of the earliest completion time is simple:

ecti = esti + pi

However in the general case it is much more complicated. Therefore we are
looking for a good lower bound, traditionally defined as:

preEct (Θ) = estΘ +
⌈eΘ

C

⌉

4 Petr Viĺım

where:

estΘ = min
i∈Θ

{esti}

eΘ =
∑

i∈Θ

ei

Note that preEct is only a lower bound. For example:

(i) If we closely inspect all subsets Ω ⊆ Θ we can achieve better estimation of
earliest completion time of the set Θ. For an example Figure 2.

(ii) Since we take into account only total energy of the set Θ, we assume that
all activities in Θ are fully “elastic”. For example for Θ = {i} from Figure 1
preEct(Θ) = 1 even though activity i cannot end before ecti = 4. 1

esta = 0

a

lcta = 8

b

estb = 14 lctb = 20

C = ca = cb = 2

0 5 10 15 20

Fig. 2. An example: preEct ({a, b}) = 4 even though {a, b} cannot end before ectb = 16.

In this paper we will address only issue (i) by defining better estimation of
earliest completion time:

Ect(Θ) = max
Ω⊆Θ

{preEct (Ω)}

What is algebraically equivalent to:

Ect(Θ) = max
Ω⊆Θ

{

estΩ +
⌈eΩ

C

⌉}

=

⌈

maxΩ⊆Θ{C estΩ + eΩ}

C

⌉

Lets call the numerator of the last fraction energy envelope of the set Θ:

Env(Θ) = max
Ω⊆Θ

{C estΩ + eΩ} (3)

Hence:

Ect(Θ) =

⌈

Env(Θ)

C

⌉

For an example of Ect(Θ) and Env(Θ) see Figure 3.
The reason we defined energy envelope is that it is simpler to use in the

algorithms than the earliest completion time.

1 That is also the reason why earliest start time of an activity i is denoted by lower-
case letters ecti but earliest completion time of a set of activities Θ is denoted by
Ect(Θ) with capital E.

Max Energy Filtering Algorithm for Discrete Cumulative Resources 5

a

b

c d

esta = estb = 2 lcta = lctb = 5 estc = estd = 8 lcta = lctb = 13

C = 2Env(Θ) = 24

0 5 10

Fig. 3. Example of a set Θ = {a, b, c, d} with earliest completion time Ect(Θ) = 12 and
energy envelope Env(Θ) = 24. Maximum envelope is achieved by the set Ω = {c, d}.
Energy envelope is depicted by gray lines.

3 Overload, E-Feasibility

This section provides a variation of the e-feasibility checking algorithm by Armin
Wolf and Gunnar Schrader [7]. This algorithm is the basis of the Max Energy
algorithm presented later in this paper.

Traditionally, we define an overload as a situation when a subset of activities
Ω ⊆ T requires more resource energy than what is available between earliest
possible start and latest possible end time of the set Ω (see for example [3]). If
there is overload then no solution exists:

∀Ω ⊆ T : (eΩ > C(lctΩ − estΩ) ⇒ fail) (OL)

where:
lctΩ = max {lcti, i ∈ Ω}

If there is no overload then we say that the problem is e-feasible.
It would take too much time to check all subsets Ω ⊆ T . Fortunately there

is a faster way:

Proposition 1. The problem is e-feasible if and only if

∀j ∈ T : Env (LCut (T, j)) ≤ C lctj

where LCut(T, j) is a left cut of T by activity j:

LCut(T, j) = {k, k ∈ T & lctk ≤ lctj}

Proof. We will prove the equivalence by proving both implications:

1. If rule (OL) detects overload then there is a set Ω such that C lctΩ <
C estΩ + eΩ . In this case we define j ∈ Ω to be activity from set Ω such that
lctj = lctΩ (if there are more activities with this property, we can choose
arbitrarily). Thanks to the definition of j it holds that Ω ⊆ LCut(T, j) and
therefore:

C lctj = C lctΩ < C estΩ + eΩ

(3)

≤ Env (LCut (T, j))

Therefore the second rule also detects overload.

6 Petr Viĺım

2. If Env (LCut (T, j)) > C lctj then by (3) there is a set Ω ⊆ LCut(T, j) such
that C estΩ + eΩ = Env (LCut (T, j)). And for this set Ω:

C lctΩ ≤ C lctj < Env (LCut (T, j)) = C estΩ + eΩ

And therefore rule (OL) also detects overload. ⊓⊔

The key idea of the algorithm is to organize set LCut(T, j) = Θ in a balanced
binary tree, which we call Θ-tree (it is an extension of Θ-tree structure for unary
resources described for example in [6]). Activities are represented by leaf nodes2

and sorted by esti from left to right. Each node v of the tree holds the following
values:

ev = eLeaves(v) (4)

Envv = Env (Leaves (v)) (5)

Where Leaves(v) is a set of all activities represented by leaves of the subtree
rooted in v. Figure 4 shows a Θ-tree from an example from Figure 3. Notice that
the energy envelope of the represented set Θ is equivalent to the value Env of
the root node.

e = 14

Env = 24

e = 6

Env = 10

e = 8

Env = 24

esta = 2

ea = 3

Env = 7

estb = 2

eb = 3

Env = 7

estc = 8

ec = 4

Env = 20

estd = 8

ed = 4

Env = 20

Fig. 4. An example of a Θ-tree for Θ = {a, b, c, d} from Figure 3.

For a leaf node v representing an activity i ∈ T the values in the tree are set
to:

ev = ei

Envv = Env ({i}) = C esti + ei

For internal nodes v these values can be computed recursively from their children
nodes left(v) and right(v):

2 This is the main difference from the algorithm in [7], that algorithm represents
activities also in the internal nodes of the tree.

Max Energy Filtering Algorithm for Discrete Cumulative Resources 7

Proposition 2. For an internal node v, values ev and Envv can be computed
by the following recursive formula:

ev = eleft(v) + eright(v) (6)

Envv = max
{

Envleft(v) + eright(v), Envright(v)

}

(7)

Proof. Formula (6) is trivial, we will prove only formula (7). From the definition
(5), the value Envv is:

Envv = Env (Leaves (v)) = max {C estΩ + eΩ, Ω ⊆ Leaves(v)}

With respect to the node v we will split the sets Ω into the following two cate-
gories:

1. Left(v) ∩ Ω = ∅, i.e., Ω ⊆ Right(v). Clearly:

max {C estΩ + eΩ, Ω ⊆ Right(v)} = Env (Right(v)) = Envright(v)

2. Left(v) ∩ Ω 6= ∅. Then estΩ = estΩ∩Left(v) because leaf nodes are sorted by
esti. Let S be the set of all possible Ω considered in this part of the proof:

S = {Ω, Ω ⊆ Θ & Ω ∩ Left(v) 6= ∅}

Then:

max {C estΩ + eΩ, Ω ∈ S} =

= max
{

C estΩ∩Left(v) + eΩ∩Left(v) + eΩ∩Right(v), Ω ∈ S
}

=

= max
{

C estΩ∩Left(v) + eΩ∩Left(v), Ω ∈ S
}

+ eRight(v) =

= Envleft(v) + eright(v)

We used the fact that the maximum is achieved only by such a set Ω for
which Right(v) (Ω. We also used the fact that Ω ∩ Left(v) enumerates all
possible subsets of Left(v) and therefore:

max
{

C estΩ∩Left(v) + eΩ∩Left(v), Ω ∈ S
}

= Envleft(v)

Combining the results of parts 1 and 2 together we see that formula (7) is correct.
⊓⊔

Thanks to formulas (6) and (7), computation of values ev and Envv can be
integrated within usual operations with balanced binary trees without changing
their time complexity, see Table 1.

The idea of the overload checking algorithm follows. We will iterate over
all left cuts LCut(T, j) by non-decreasing lctj . The cuts will be represented by
Θ-tree what allows to quickly recompute Env (LCut (T, j)) each time when j is
changed. For each set Θ = LCut(T, j) we check e-feasibility using Proposition 1.
The resulting Algorithm 1 has worst-case time complexity O(n log n).

8 Petr Viĺım

Operation Time Complexity

Θ := ∅ O(1)
Θ := Θ ∪ {i} O(log n)
Θ := Θ \ {i} O(log n)
Env(Θ) O(1)

Table 1. Worst-case time complexities of operations on Θ-tree.

Algorithm 1. Overload Checking in O(n log n)

1 Θ := ∅ ;
2 for j ∈ T in non-decreasing order of lctj do begin
3 Θ := Θ ∪ {j} ;
4 if Env(Θ) > C lctj then
5 fail ; {No solution exists}
6 end ;

4 Max Energy Propagation

In this section we will extend the algorithm for overload detection to compute
maximum energy of each activity i ∈ T . The idea of the propagation is to protect
possible overload caused by increase of some energy demand ei.

Consider for example situation on Figure 3. In this example, minimum re-
quired energy of activity c is ec = 4. Maximum required energy ec is not depicted
on the figure, but lets say that ec = 10. However considering also activity d
(which requires at least ed = 4) the maximum feasible energy for activity c is 6,
otherwise there would be an overload for Ω = {c, d}. Therefore we can update
ec := 6, and according to formula (2) pc := 3. What we just described on the
example is the goal of the presented algorithm: for each activity i ∈ T , compute
maximum feasible energy ei such that if ei is increased above ei then there will
be an overload.

In Proposition 1 we have learned that the resource is e-feasible iff:

∀j ∈ T : Env (LCut (T, j)) ≤ C lctj

In other words we can assign to each set LCut (T, j) a maximum feasible envelope
Env:

Env (LCut (T, j)) := C lctj (8)

The idea is to propagate maximum feasible envelope from the set LCut(T, j)
into all its members and this way find maximum feasible energy of all activities.

Lets have have a look on the Θ-tree representing a particular set Θ =
LCut(T, j). For overload checking we compute recursively in each node the fol-

Max Energy Filtering Algorithm for Discrete Cumulative Resources 9

lowing values by formulas (6) and (7):

ev = eleft(v) + eright(v) (6)

Envv = max
{

Envleft(v) + eright(v), Envright(v)

}

(7)

The idea is to extend the tree by adding two more attributes into each node of
the tree:

– maximum feasible energy envelope Envv of the set Leaves(v),
– and maximum feasible energy ev for the set Leaves(v).

The additional attributes can be also computed recursively, this time from root
down to the leaves. It starts at the root node r (see (8)):

Envr := C lctj (9)

er := ∞ (10)

The recursive rules to propagate these values down the tree are:

Envright(v) := Envv (11)

Envleft(v) := Envv − eright(v) (12)

eright(v) := min
{

Envv − Envleft(v), ev − eleft(v)

}

(13)

eleft(v) := ev − eright(v) (14)

For an example of computation of e and Env see Figure 5.
Formal proof of the recursive rules (11) – (14) will follow. But let us first

explain for example construction of formula (13). If eright(v) is increased then it
will cause also an increase of ev by formula (6). However maximum feasible value
of ev is ev and therefore the maximum feasible value of eright(v) has to fulfill the
following formula:

eright(v) ≤ ev − eleft(v)

Similarly, increase of eright(v) can lead to the increase of Envv by formula (7) but

it cannot exceed the maximum feasible value Envv. Therefore:

eright(v) ≤ Envv − Envleft(v)

Combining the these two formulas we get rule (13). The remaining three rules
(11), (12) and (14) are constructed in a similar way.

Let us formally proof correctness of the rules (11) – (14). We start with the
following lemma:

Lemma 1. For a node w and its parent node v in a Θ-tree: if one of the values
Envw and ew are not respected (that is Envw > Envw or ew > ew) then at least
one of the values Envv, ev is not respected too.

Proof. We will split the proof into two parts depending on whether w is left or
right son of node v:

10 Petr Viĺım

e = 14

Env = 24

e = ∞

Env = 26

e = 6

Env = 10

e = ∞

Env = 18

e = 8

Env = 24

e = 16

Env = 26

esta = 2

ea = 3

Env = 7

e = ∞

Env = 15

estb = 2

eb = 3

Env = 7

e = 11

Env = 18

estc = 8

ec = 4

Env = 20

e = 12

Env = 22

estd = 8

ed = 4

Env = 20

e = 6

Env = 26

Fig. 5. Computation of Env and e for Θ = {a, b, c, d} from Figure 3. Notice that from
the nodes representing activities c and d we can conclude that ec ≤ 6 and ed ≤ 6. In
case of activity d because of e in the node, in case of activity c because of Env in the
node as will be described by (15).

1. Case w = left(v). If ew is not respected then:

ew > ew

(14)
= ev − eright(v)

ew + eright(v) > ev

ev > ev by (6)

Therefore if ev is not respected then ev is not respected too.
Similarly if Envw is not respected then:

Envw > Envw

(12)
= Envv − eright(v)

Envw + eright(v) > Envv

max{Envw + eright(v), Envright(v)} > Envv

Envv > Envv by (7)

So if Envw is not respected then Envv is not respected too.
2. Case w = right(v). If ew is not respected then:

ew > ew

(13)
= min{Envv − Envleft(v), ev − eleft(v)}

Max Energy Filtering Algorithm for Discrete Cumulative Resources 11

Therefore

(a) Either:

ew > Envv − Envleft(v)

Envleft(v) + ew > Envv

Envv > Envv by (7)

And so Envv is not respected.
(b) Or:

ew > ev − eleft(v)

eleft(v) + ew > ev

ev > ev by (6)

And so ev is not respected.

Finally if Envw is not respected then:

Envw > Envw

(11)
= Envv

Therefore

Envv

(7)
= max{Envleft(v) + ew, Envw} ≥ Envw > Envv

And thus Envv is not respected. ⊓⊔

A consequence of this lemma is:

Proposition 3. Let i ∈ LCut(T, j) and let v be a leaf node representing activ-
ity i in Θ-tree for LCut(T, j). If ei > min

{

ev, Envv − C esti

}

then there is an
overload and therefore the problem is unfeasible.

Proof. If ei > min
{

ev, Envv − C esti

}

then it means that either ev or Envv in
the node v is not respected. By the previous lemma it means that at least one of
these values is not respected also in parent node of v. And so we continue this
way to the root node r and prove that er or Envr is not respected.

However for root node r, er = ∞ by (10) therefore er has to be respected.
The conclusion is that Envr is not respected and therefore:

Envr > Envr

(9)
= C lctj

Env (LCut (T, j)) > C lctj

So there is overload by Proposition 1. ⊓⊔

12 Petr Viĺım

The proposition above gives as an upper bound for maximum energy available
for each activity i ∈ LCut(T, j):

ei ≤ min
{

ev, Envv − C esti

}

(15)

Notice that for example on Figures 3 and 5 the formula (15) gives ec = 6 and
ed = 6 and therefore by (2) pc = 3 and pd = 3.

The basic idea of the algorithm follows: we iterate over all activities j ∈ T
and for each j we build Θ-tree representing LCut(T, j) by adding new nodes into
the Θ-tree from the previous iteration. In each Θ-tree we propagate the maxi-
mum energy envelope C lctj from the root to leave nodes and assign maximum
energies to activities i ∈ LCut(T, j) according to formula (15). First version of
the algorithm with time complexity O(n2) is provided by Algorithm 2. Note that
this is not the O(n2) algorithm by Wim Nuijten, for better understanding we
start with O(n2) algorithm and then speed it up to O(n log n).

The algorithm uses two procedures:

– push down(v) pushes the values Envv and ev from the node v down the tree
using the rules (11) – (14).

– set energy max(i) sets maximum energy ei of the activity i using for-
mula (15).

Algorithm 2. Maximum energy propagation in O(n2)

1 Θ := ∅ ;
2 for j ∈ T in non-decreasing order of lctj do begin
3 Θ := Θ ∪ {j} ;
4 if Env(Θ) > C lctj then
5 fail ; {No solution exists}
6 EnvΘ := C lctj ;
7 for nodes v in Θ-tree in non-decreasing order of their depth do
8 push_down (v) ;
9 for i ∈ Θ do

10 set_energy_max (i) ;
11 end ;

Time complexity of this algorithm is O(n2) because the inner cycles on lines
7 – 8 and 9 – 10 have time complexity O(n). In the following we will show how
to improve the time complexity from O(n2) to O(n log n).

The key observation is that it is not necessary to push values ev and Envv

down to leaves immediately. The values ev and Envv stays valid until new node is
inserted into the subtree of v. Therefore it is possible to postpone push down(v)
until new node is inserted somewhere under the node v.

Max Energy Filtering Algorithm for Discrete Cumulative Resources 13

Current procedure push down(v) simply overwrites values e and Env in chil-
dren nodes of v. However that is no longer possible in the new algorithm be-
cause children nodes may contain information which was not pushed down yet.
Therefore it is necessary create new procedure push down2(v) which implements
modified rules (11) – (14):

Envright(v) := min
{

Envv, Envright(v)

}

(16)

Envleft(v) := min
{

Envv − eright(v), Envleft(v)

}

(17)

eright(v) := min
{

Envv − Envleft(v), ev − eleft(v), eright(v)

}

(18)

eleft(v) := min
{

ev − eright(v), eleft(v)

}

(19)

The values ev and Envv must be initialized to:

ev := ∞

Envv := ∞

The postponed calls of push down2(v) must be executed just before new
node is added into the tree. The most suitable place is to replace Θ := Θ ∪ {j}
on line 3 by procedure add(Θ, j) which will make necessary postponed calls.

For simplicity, lets assume that the shape of the tree is fixed and no re-
balancing occurs during the addition of new node into the tree3. The procedure
add(Θ, j) has following steps:

1. Find a node w under which new node will be inserted.
2. Call push down2(v) on all nodes v on the path from the root to w, and then

reset these nodes to:

ev := ∞

Envv := ∞

3. Add new node in the tree, fill the leaf representing j by data about the
activity j.

4. Recompute values ev and Envv on the path from this leaf to the root.

The resulting Algorithm 3 has worst case time complexity O(n log n).

5 Optional Activities

As mentioned in the introduction, IBM ILOG CP Optimizer 2.0 [1] introduce
a new variable type designed for scheduling – interval variable. The difference
between activity (as we used this word in this paper) and an interval variable
is that an interval variable by itself does not require any resource. An activity
is created when an interval variable is constrained to require a resource. One

3 This can be achieved for example by computing perfectly balanced tree of all activ-
ities in advance.

14 Petr Viĺım

Algorithm 3. Maximum energy propagation in O(n log n)

1 Θ := ∅ ;
2 for j ∈ T in non-decreasing order of lctj do begin
3 add (Θ , j) ;
4 if Env(Θ) > C lctj then
5 fail ; {No solution exists}
6 EnvΘ := C lctj ;
7 end ;
8 for nodes v in Θ-tree in non-decreasing order of their depth do
9 push_down2 (v) ;

10 for i ∈ T do
11 set_energy_max (i) ;

interval variable may require more than one resource, in this case the interval
variable is associated with several activities and all of them share their start
times and end times.

Interval variable in IBM ILOG CP Optimizer has very important aspect: it
can be declared as optional, that is, it may or may not be present in the solution.
In this case all its activities are also optional.

Typical use of optional interval variables are alternative between two different
actions. This can be easily modeled by two optional interval variables and a
constraint that exactly one of them is present in the solution. Both optional
intervals can require some discrete cumulative resource during their execution,
however the interval which is not present in the solution does not affect any
resource. For more details about optional interval variables see [4, 1].

From the point of view of the resource, there are some optional activities
which may or may not be executed on the resource, this is yet to be decided.
During the search an optional activity may become:

A) preset if:
1) we decide to execute it as a search decision,
2) or if we proved (by propagation) that no other alternative is possible,

B) absent if:
1) we decided to not to execute it by a search decision,
2) or if we proved (by propagation) that execution of this activity is not

possible.

The algorithm Max Energy presented in this paper can do the propagation B2)
above. This is very important propagation because usually any propagation on
optionality status has a big impact on other variables.

How to use Algorithm 3 with optional activities? First observe that from
the point of view of discrete cumulative resource, there is no difference between
absent activity and activity with zero energy (that is, activity with zero duration
or zero capacity requirement). Zero-energy activity can be processed anytime
even though the resource is already full.

Max Energy Filtering Algorithm for Discrete Cumulative Resources 15

The idea is to use Algorithm 3 directly without any modification, but on
modified input data. If an activity is optional then (just for the algorithm) its
minimum energy is set to zero. This way, optional activity cannot influence any
other activity, however upper bound ei for energy computed by the algorithm is
valid also for optional activity i. Furthermore if ei < ei we can deduce that the
activity i cannot be present in the solution.

6 Conclusions and Further Work

This paper presents a new Max Energy propagation algorithm which updates
maximum durations and maximum capacity requirements on discrete cumula-
tive resource with optional activities. The algorithm has better time complexity
(O(n log n) versus O(n2)) than old never published algorithm by Wim Nuijten.
Experiments show that the new algorithm begin to be faster than the old one
for n around 10. The algorithm is used by IBM ILOG CP Optimizer [1] since
version 2.0.

References

[1] IBM ILOG CP Optimizer. http://www.ilog.com/products/cpoptimizer/.
[2] Luc Mercier and Pascal Van Hentenryck. Edge finding for cumulative

scheduling. Informs Journal of Computing, 20(1):143–153, 2008.
[3] Claude Le Pape Philippe Baptiste and Wim Nuijten. Constraint-Based

Scheduling: Applying Constraint Programming to Scheduling Problems.
Kluwer Academic Publishers, 2001.

[4] Jerôme Rogerie Philippe Laborie. Reasoning with conditional time-intervals.
In David Wilson and H. Chad Lane, editors, Proceedings of the Twenty-
First International Florida Artificial Intelligence Research Society Confer-
ence, May 15-17, 2008, Coconut Grove, Florida, USA, pages 555–560. AAAI
Press, 2008.

[5] Andreas Schutt, Armin Wolf, and Gunnar Schrader. Not-first and not-last de-
tection for cumulative scheduling in O(n3 log n). In 16th International Con-
ference on Applications of Declarative Programming and Knowledge Man-
agement, INAP 2005, pages 66–80, Fukuoka, Japan, October 2005. Springer.
ISBN 3-540-69233-9.

[6] Petr Viĺım. Global Constraints in Scheduling. PhD thesis, Charles Univer-
sity in Prague, Faculty of Mathematics and Physics, Department of Theo-
retical Computer Science and Mathematical Logic, KTIML MFF, Universita
Karlova, Malostranské náměst́ı 2/25, 118 00 Praha 1, Czech Republic, Au-
gust 2007. URL http://vilim.eu/petr/disertace.pdf.

[7] Armin Wolf and Gunnar Schrader. O(n log n) overload checking for the cu-
mulative constraint and its application. In 16th International Conference
on Applications of Declarative Programming and Knowledge Management,
INAP 2005, pages 88–101, Fukuoka, Japan, October 2005. Springer. ISBN
3-540-69233-9.

