This file contains detailed results for open RCPSP instances, as described in the following paper: Petr Vilim: Timetable Edge Finding Filtering Algorithm for Discrete Cumulative Resources The column improvement compares with results stored in PSPLIB web page http://webserver.wi.tum.de/psplib at January 17th 2011 and with results from the following paper: Philippe Laborie: Complete MCS-based search: Application to resource constrained project scheduling. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI, pages 181-186. Professional Book Center, 2005. Instance New Lower Bound Improvement J60_9_1 84 +2 J60_9_7 102 +2 J60_13_2 102 +1 J60_13_3 83 +1 J60_13_5 92 +1 J60_13_6 91 +1 J60_13_7 81 +1 J60_13_8 114 +2 J90_5_3 83 +1 J90_5_5 108 +1 J90_9_1 99 +1 J90_9_2 121 +2 J90_9_4 119 +2 J90_9_5 126 +1 J90_9_6 112 +2 J90_9_8 110 +1 J90_9_10 104 +2 J90_13_1 129 +2 J90_13_4 109 +1 J90_13_6 117 +1 J90_13_10 113 +1 J90_25_1 116 +2 J90_25_2 121 +1 J90_25_3 112 +1 J90_25_7 122 +2 J90_25_8 130 +1 J90_29_2 121 +1 J90_29_3 136 +1 J90_29_5 116 +2 J90_29_7 159 +1 J90_29_9 119 +1 J90_29_10 118 +1 J90_30_9 91 +1 J90_41_2 153 +2 J90_41_3 148 +1 J90_41_4 141 +1 J90_41_10 143 +2 J90_45_2 137 +1 J90_45_5 163 +1 J90_45_7 128 +1 J90_45_10 155 +1 J90_46_8 94 +1 J120_6_1 133 +1 J120_6_2 126 +1 J120_6_5 116 +1 J120_6_7 155 +1 J120_6_9 149 +4 J120_6_10 157 +1 J120_7_1 98 +1 J120_7_4 105 +2 J120_7_5 126 +3 J120_7_7 113 +1 J120_7_8 92 +1 J120_7_9 86 +2 J120_7_10 111 +1 J120_8_9 89 +2 J120_11_1 156 +1 J120_11_2 146 +1 J120_11_3 188 +2 J120_11_5 193 +2 J120_11_6 191 +2 J120_11_8 152 +1 J120_11_9 168 +1 J120_12_2 111 +1 J120_12_3 132 +2 J120_12_5 154 +1 J120_12_7 116 +1 J120_12_8 113 +3 J120_12_9 101 +1 J120_13_1 123 +2 J120_13_3 115 +1 J120_13_4 108 +1 J120_13_5 90 +1 J120_13_8 91 +1 J120_13_10 89 +4 J120_14_2 90 +1 J120_14_8 110 +2 J120_16_1 180 +1 J120_16_2 221 +3 J120_16_3 220 +1 J120_16_4 190 +1 J120_16_9 189 +1 J120_16_10 204 +2 J120_17_2 121 +1 J120_17_5 123 +1 J120_17_9 129 +1 J120_18_6 131 +1 J120_18_7 112 +1 J120_19_4 103 +4 J120_19_9 88 +1 J120_26_3 157 +4 J120_26_6 170 +3 J120_26_7 146 +2 J120_27_1 106 +1 J120_27_3 141 +2 J120_27_4 104 +1 J120_27_6 132 +2 J120_27_9 120 +1 J120_28_1 105 +1 J120_31_1 180 +2 J120_31_2 175 +1 J120_31_3 159 +3 J120_31_5 186 +2 J120_31_7 190 +1 J120_31_8 175 +3 J120_31_9 175 +2 J120_32_1 143 +1 J120_32_2 122 +1 J120_32_3 134 +1 J120_32_4 127 +2 J120_32_5 132 +1 J120_32_6 121 +1 J120_32_7 118 +1 J120_32_8 131 +1 J120_32_9 125 +2 J120_33_2 106 +1 J120_33_3 101 +1 J120_33_4 106 +1 J120_33_5 133 +2 J120_33_7 121 +1 J120_33_10 102 +1 J120_34_5 101 +1 J120_34_9 91 +1 J120_36_1 200 +1 J120_36_7 195 +1 J120_37_1 138 +1 J120_37_4 156 +1 J120_37_5 194 +3 J120_37_6 155 +2 J120_37_7 151 +2 J120_37_10 127 +1 J120_38_3 154 +1 J120_38_5 111 +1 J120_38_8 121 +1 J120_39_10 105 +1 J120_46_7 157 +2 J120_47_7 113 +2 J120_47_8 123 +2 J120_47_10 127 +1 J120_48_2 111 +1 J120_48_4 122 +3 J120_51_3 192 +2 J120_52_2 168 +2 J120_52_3 125 +1 J120_52_4 156 +1 J120_52_5 157 +1 J120_52_6 182 +3 J120_52_7 141 +1 J120_52_8 147 +1 J120_52_9 141 +2 J120_53_1 137 +1 J120_53_3 106 +1 J120_53_5 108 +1 J120_53_8 134 +1 J120_54_8 99 +1 J120_54_9 104 +1 J120_57_3 175 +2 J120_57_4 187 +2 J120_57_5 169 +2 J120_57_7 155 +1 J120_57_8 156 +2 J120_57_9 156 +1 J120_57_10 157 +2 J120_58_7 142 +1 J120_58_10 125 +1 J120_59_7 109 +1 J120_59_8 106 +1 J120_59_10 127 +1 J120_60_10 88 +1