
Timetable Edge Finding Filtering Algorithm for

Discrete Cumulative Resources

Petr Viĺım

IBM, V Parku 2294/4
148 00 Praha 4 - Chodov, Czech Republic

petr vilim@cz.ibm.com

Abstract. Edge Finding filtering algorithm is one of the reasons why
Constraint Programming is a successful approach in the scheduling do-
main. However edge finding for cumulative resources was never as suc-
cessful as edge finding for disjunctive resources. This paper presents a
new variant of the edge finding algorithm which improves filtering by
taking into account minimum capacity profile - a data structure known
from timetabling algorithm. In comparison with standard and extended
edge finding algorithms the new algorithm is stronger but it may need
more iterations in order to reach the fixpoint. Time complexity of the
algorithm is O(n2) where n is number of activities on the resource. We
also propose further improvement of the filtering by incorporating some
ideas from not-first/not-last and energetic reasoning algorithms. The fil-
tering power of the algorithm is tested on computation of destructive
lower bounds for 438 open RCPSP problems. For 169 of them we im-
prove current best lower bound, in 9 cases backtrack free.

Keywords: Constraint Programming, Scheduling, Discrete Cumulative
Resource, Propagation

1 Introduction

This paper focuses on discrete cumulative resource – an abstraction of manpower,
electricity, machinery or any other (renewable) resource which is used to perform
activities (tasks to be scheduled). Although the resource can be used by several
activities simultaneously, total resource capacity used at any time cannot exceed
capacity limit C. In a constraint programming framework we usually associate a
constraint with each resource. The task of this resource constraint is to remove
inconsistent values from temporal variables associated with activities. For the
rest of the paper we will concentrate on propagation for a single resource.

A discrete cumulative resource is characterized by maximum capacity of the
resource C ∈ N and a set T of n activities, n = |T |. Each activity has the
following attributes:

– the earliest start time esti ∈ N,
– the latest completion time (deadline) lcti ∈ N,
– the processing time (duration) pi ∈ N (a constant),

esti lcti

i

i

lcti − p
i

esti +p
i

Fig. 1. Two extreme positions of activity i. Re-
gardless of its position, activity i always uses
the resource during [lcti −p

i
, esti +p

i
].

C

time

Fig. 2. Accumulated minimum
capacity profile.

– the required capacity ci ∈ N (a constant),
– and energy of the activity ei = ci pi (a constant).

Activities are assumed to be non-preemptive: once the processing of activity
i starts at time t then it must continue without preemption until t + pi. For
each activity we maintain a decision variable for the start time of the activity
with domain [esti, lcti− pi]. The aim of the resource constraint is to remove
inconsistent values from this domain by increasing esti and decreasing lcti.

1.1 Related Works

This section reviews some of the existing techniques to propagate cumulative
resource constraint.

Timetabling The idea of timetabling is to look for activities i such that
lcti − pi < esti+pi, see Figure 1. Such activities necessarily use the resource
during interval [lcti− pi, esti+pi]. By aggregating these intervals we compute
a minimum capacity profile (a timetable) which shows minimum resource usage
over time (Figure 2). Typically, the minimum capacity profile is maintained dur-
ing the search and used to detect infeasibility and also to update time bounds
of activities. For more information see [6, chapters 3.3.1 and 2.1.1].

Edge Finding and Extended Edge Finding Unlike timetabling, edge find-
ing propagation is based on reasoning about a set of activities. Let us consider
a set of activities Ω ⊆ T . For Ω we define earliest starting time estΩ , latest
completion time lctΩ and energy eΩ as:

estΩ = min{esti, i ∈ Ω}

lctΩ = max{lcti, i ∈ Ω}
eΩ =

∑

i∈Ω

ei

The total energy available for Ω is C (lctΩ − estΩ). If Ω requires more energy
then there is no solution (this is called overload rule):

∀Ω ⊆ T : (C (lctΩ − estΩ) < eΩ ⇒ fail)

Edge finding is also able to update temporal bounds of activities. Informally
speaking, it checks whether scheduling an activity i at its earliest start time
esti would lead to overload as described above. If it is the case then esti is

A

B

C D

estA = estD = 0

estB = estC = 2

lctA = lctB = lctC = 5

C = 3

0 5

act. est lct p c

A 0 5 1 3
B 2 5 3 1
C 2 5 2 2
D 0 99 4 2

Fig. 3. An example from [11]: resource with capacity C = 3 and activities {A,B,C,D}.
The table on the right summarizes attributes of these activities. Edge finding updates
estD from 0 to 4 because scheduling D at 0 would lead to overflow in interval [0, 5].

estΩ = 1 lctΩ = 5

lcti = 6esti = 0 i

0 2 4 6

Fig. 4. Activity i with esti = 0, lcti = 6,
p
i
= 4 and ci = 1. Activity i requires at

least 3 energy units during [1, 5]. However
edge finding does not take them into ac-
count.

lcti = 6esti = 0

0 2 4 6

Fixed part, pTT

i
= 2 Free part, pEF

i
= 2

Fig. 5. Fixed and free parts of activity i
with esti = 0, lcti = 6, p

i
= 4.

updated. For an example see Figure 3, details are described in Section 4. There
is also a symmetrical algorithm to update lcti. Paper [5] provides algorithms
for both standard and extended edge finding algorithms with time complexity
O(kn2) (k is number of distinct capacity demands k = |{ci, i ∈ T }|). There
is also a standard (not extended) edge finding algorithm with time complexity
O(kn logn) in [11]. There are also independent attempts to design edge finding
algorithms with better time complexities by Roger Kameugne.

Energetic Reasoning Edge finding is not perfectly accurate in computation
of energy requirement during the interval [estΩ, lctΩ]. In particular, eΩ does
not take into account activities that only partially overlap with [estΩ, lctΩ], see
Figure 4. Energetic reasoning (also called CNP-ER) is able to take such partial
overlaps into account. It also considers more intervals than only [estΩ , lctΩ].
Chapter 3.3.6 in [6] presents an algorithms to detect infeasibility and to update
temporal bounds, their time complexities are O(n2) and O(n3).

Dominance Relations Chapter 4.2.4 in [6] contains a detailed analysis of dom-
inance relations between different filtering algorithms for cumulative resources.
The conclusion is that energetic reasoning is stronger than both timetabling and
edge finding. However edge finding does not dominate timetabling and vice versa.
Therefore edge finding can be improved by taking into account the timetable as
we suggest in this paper. Energetic reasoning is still stronger than the proposed
algorithm but slower (time complexity O(n3) versus O(n2)). What we propose
is a good trade off between filtering power and speed.

Note that for practical reasons the proposed algorithm is not designed to
subsume the timetable algorithm: it is faster to do some propagation by the
timetable algorithm.

2 TimeTable Edge Finding

The idea is to improve computation of the energy consumed during [estΩ , lctΩ]
using information from the timetable. Let us consider again the example on
Figure 4. From timetabling point of view, activity i contributes to the minimum
capacity profile by 2 energy units on interval [2, 4]. By using timetable in the
edge finding we will be able to take the 2 energy units into account and therefore
improve filtering. Note that it is still less than the 3 energy units detected by
energetic reasoning but often the values are the same.

In order to use timetable we split each activity into two parts: fixed part
(counted in the timetable) and remaining free part. See Figures 1 and 5. The split
is done in the following way. For each activity i we compute its fixed duration
pTT

i and free duration pEF

i as:

pTT

i = max (0, esti+pi− (lcti − pi)) pEF

i = pi− pTT

i

Fixed and free parts are handled differently:

Fixed Part If pTT = 0 then the fixed part is empty and we ignore it. Oth-
erwise we increase the minimum consumption level in the timetable on interval
[lcti − pi, esti+pi] by ci.

Free Part Empty free parts (pEF

i = 0) are ignored. Activities with non-empty
free parts form a set T EF = {i, i ∈ T & pEF > 0}. We also define the energy
of the free part as eEF

i = ci p
EF

i . We can consider a free part of activity i as a
separate activity with the same earliest start time esti and latest completion
time lcti as the original activity i. However, unlike the original activity, the free
part is preemptive: it can (and must) be suspended during [lcti − pi, esti+pi].

2.1 Timetable

Timetable records the minimum capacity consumption at each time point t. In
other words this data structure represents a function TT(t) such that TT(t) is
the sum of capacities of all fixed parts which overlap time t (Figure 2).

For the presented algorithm we need to know how much energy is stored
in the timetable for interval [estΩ, lctΩ]. To compute it we introduce functions
ttAfterEst(i) and ttAfterLct(i), they compute the total energy stored in the
timetable after esti and after lcti:

ttAfterEst(i) =
∑

t∈N∧t≥esti

TT(t) ttAfterLct(i) =
∑

t∈N∧t≥lcti

TT(t)

Let us consider set Ω ⊆ T and activities a, b ∈ Ω such that esta = estΩ and
lctb = lctΩ. Then the energy stored in the timetable for interval [estΩ, lctΩ] is
ttAfterEst(a)− ttAfterLct(b). For simplicity we define also:

ttAfterEst(Ω) = ttAfterEst(a) where a ∈ Ω and esta = estΩ

ttAfterLct(Ω) = ttAfterLct(b) where b ∈ Ω and lctb = lctΩ

Algorithm 1. Overload Checking

1 for b ∈ T EF do begin
2 eEF := 0 ;
3 for a ∈ T EF in non-increasing order by esta do
4 i f lcta ≤ lctb then begin
5 eEF := eEF + eEF

a ;
6 i f C(lctb − esta) < eEF + ttAfterEst[a]− ttAfterLct[b] then
7 f a i l ;
8 end ;
9 end ;

Functions ttAfterEst(i) and ttAfterLct(i) can be computed from function
TT(t) in O(n log n) as follows. We sort activities into four lists: according to
esti+pi, lcti − pi, esti and lcti. Then we sweep over all these events in anti-
chronological order. During the sweep we maintain total energy stored in the
timetable after the current event. The result of the computation is stored in
arrays ttAfterEst and ttAfterLct.

2.2 Overload Checking

We start by the algorithm for checking infeasibility. Let’s consider set Ω ⊆ T EF.
Energy of free parts of activities in Ω is eEF

Ω =
∑

i∈Ω eEF

i . Therefore mini-
mum energy consumption by both fixed and free parts during [estΩ, lctΩ] is
eEF

Ω +ttAfterEst (Ω)− ttAfterLct (Ω). However energy available in [estΩ, lctΩ] is
C (lctΩ − estΩ). Therefore remaining energy “reserve” in [estΩ, lctΩ] is:

reserve(Ω) = C (lctΩ − estΩ)− (eEF

Ω +ttAfterEst (Ω)− ttAfterLct (Ω))

If the reserve is negative then the problem is infeasible:

∀Ω ⊆ T EF : (reserve(Ω) < 0 ⇒ fail)

Clearly it is not necessary to check all sets Ω ⊆ T EF. Let us consider two sets
Ω1 and Ω2 such that:

estΩ1
= estΩ2

lctΩ1
= lctΩ2

eEF

Ω1
> eEF

Ω2

Then it is enough to check only set Ω1. Therefore the rule must be checked only
for sets Ω with the following property:

∀i ∈ T EF : esti ≥ estΩ & lcti ≤ lctΩ ⇒ i ∈ Ω

Such sets Ω are traditionally called task intervals.
Algorithm 1 checks infeasibility by the rule above. The idea is to pick a task

b ∈ T EF and iterate over sets Ω such that lctΩ = lctb. Time complexity of the
algorithm is O(n2).

pEF
i

esti

Inside
pEF
i

esti

Right

pEF
i

esti

Left
pEF
i

esti

Through

estΩ lctΩ

Fig. 6. Different relative positions of activity i ∈ T EF and set Ω such that
scheduling i on esti increases energy consumption in [estΩ , lctΩ]. The increase is
marked by hatched lines.

Position Characterization Additional consumption

Inside estΩ ≤ esti & esti +pEF

i
≤ lctΩ eEF

i

Right estΩ < esti < lctΩ < esti +pEF

i
ci(lctΩ − esti)

Left esti < estΩ < esti +pEF

i
< lctΩ ci(esti +pEF

i
− estΩ)

Through esti ≤ estΩ & lctΩ ≤ esti +pEF

i
ci(lctΩ − estΩ)

Out Otherwise 0

Table 1. Additional consumption of activity i 6∈ Ω in [estΩ, lctΩ] when scheduled on
esti.

2.3 Time Bound Adjustment Rule

Value esti is invalid if scheduling activity i on esti would cause overload as
described above. In this case esti can be updated. To check such potential over-
loads, we need to compute how much additional energy activity i ∈ T EF would
require during [estΩ, lctΩ] if i is scheduled on esti. If i ∈ Ω then the whole energy
of i is already counted so we concentrate only on the case i 6∈ Ω. For i 6∈ Ω we
distinguish four relative positions of Ω and free part of i such that scheduling the
free part of i on esti increases energy consumption in [estΩ, lctΩ]. See Figure 6
and Table 1.

Let function add(estΩ, lctΩ, i) denote additional energy consumption by ac-
tivity i in [estΩ, lctΩ] as defined by Table 1. Scheduling activity i on esti causes
overload with set Ω if:

reserve(Ω) < add(estΩ, lctΩ , i)

In this case current esti can be updated. In the following we will show how to
compute this update.

We start by computation of the maximum duration that activity i can spend
inside [estΩ, lctΩ]. This duration has two parts:

1. Mandatory part: the part of i which is in the timetable and which overlaps
with [estΩ, lctΩ]. It cannot move and therefore it must stay inside [estΩ , lctΩ].

2. Optional part: this is the maximum of free duration pEF

i which can still fit
inside [estΩ, lctΩ] considering reserve(Ω).

The mandatory part is intersection of intervals [estΩ, lctΩ] and [lcti− pi, esti+pi].
Its length is:

mandatoryIn(estΩ, lctΩ, i) =

= max (0,min (lctΩ , esti +pi)−max (estΩ , lcti− pi))

Maximum length of the optional part is:

maxAddIn(Ω, i) =

⌊

reserve(Ω)

ci

⌋

The remaining duration of i must be spent after lctΩ. Therefore esti can be
updated to the following new value:

esti := lctΩ −mandatoryIn(estΩ , lctΩ, i)−maxAddIn(Ω, i)

The full propagation rule is:

∀Ω ⊂ T EF, ∀i ∈ T EF \Ω : reserve(Ω) < add(estΩ, lctΩ, i) ⇒

esti := lctΩ −mandatoryIn(estΩ, lctΩ, i)−maxAddIn(Ω, i)

There is quite a big difference between the rule above and standard edge
finding (or extended edge finding) propagation rule. Standard edge finding tries
to find best subset Ω′ ⊆ Ω to immediately achieve the best update of esti. The
rule above fixes only potential overflow with Ω. Unlike standard edge finding it
doesn’t notice that the new esti can be still invalid with respect to some Ω′ ⊂ Ω.
The proposed rule simply assumes that the algorithm will run again and if there
is still a problem with the new esti then it will be updated again. In this respect
it may take more iterations for this algorithm to reach the fixpoint. In practice
it is not a big problem as discussed later in section 2.5.

2.4 Time Bound Adjustment Algorithm

First of all, notice that to achieve maximum propagation it is enough to concen-
trate on sets Ω in the form of task intervals. The reason is the same as for the
overload rule.

The idea of the algorithm is to iterate over sets Ω in the form of task intervals
in the same way as the overload algorithm does. For each set Ω we also compute
maximum value of add(estΩ , lctΩ, i) over all i ∈ T EF \Ω. Let ι be activity i such
that add(estΩ, lctΩ, i) is maximal. We distinguish two cases:

1. If reserve(Ω) ≥ add(estΩ, lctΩ, ι) then activity ι cannot be updated by Ω.
And because add(estΩ, lctΩ, ι) is maximal, Ω cannot update any other ac-
tivity i ∈ T EF \Ω neither. Thus we can continue with the next set Ω.

2. If reserve(Ω) < add(estΩ, lctΩ , ι) then the algorithm updates estι. There
could be more activities than only ι which could be updated by Ω. However
the algorithm does not update them, they will be updated in the next iter-
ation of the algorithm. This is the second reason why the algorithm needs
more iterations to reach the fixpoint. This issue is discussed in Section 2.5.

It remains to show how to maintain ι during the algorithm. The value of func-
tion add(estΩ, lctΩ, i) depends on the relative position of i and Ω as described
in Table 1. To maintain the maximum of add(estΩ, lctΩ, i) the algorithm is split
into three phases, each phase deals only with some relative positions. In the fol-
lowing we describe each phase separately. For simplicity we will assume in the
description that there are no duplicates in esti and lcti. However the algorithm
is sound even in case of duplicates.

Inside and Right For Inside and Right positions we iterate over activities a
and b the same way as we do in the Algorithm 1 for overload checking (lines 3–7
in Algorithm 2). That is, in outer loop we iterate over activity b (in arbitrary
order) and in the inner loop we iterate over activity a in non-increasing order by
esta. Activities a such that esta ≥ lctb are skipped

1. If lcta ≤ lctb then activities
a and b define set Ω = {j, j ∈ T EF & esta ≤ estj & lctj ≤ lctb}, its energy eEF

Ω

is stored in variable eEF.

The set of activities in Inside or Right position with Ω is I = {i, i ∈
T EF & estΩ ≤ esti < lctΩ < lcti}. Therefore as we iterate over activities a,
each activity a is either put into Ω (if lcta ≤ lctb, line 9) or put into I (if
lcta > lctb). Each time when i is added into I we have to recompute ι. Ac-
cording to Table 1 value add(estΩ , lctΩ, i) for positions Inside and Right can be
computed as min (eEF

i , ci (lctb − esti)). Notice that this value does not depend at
all on activity a. This justifies computation of ι on lines 10–11.

Finally, if reserve(Ω) is less then add(estΩ, lctΩ, ι) then estι is updated (lines
13 and 14).

Through Again there are two nested cycles over activities a and b which
define set Ω = {j, j ∈ T EF & esta ≤ estj & lctj ≤ lctb}. Energy eEF

Ω is stored
in variable eEF. However in comparison with the previous phase we iterate over
activities a in reverse order. That is, we gradually remove activities a from Ω.

As we iterate over activities a we first check whether a ∈ Ω (line 21). If a ∈ Ω

then we remove it from Ω (line 25) but just before the removal we check whether
ι can be updated by Ω (lines 22–24). Furthermore if esta +pEF

a ≥ lctb (line 27)
then activity a is in Through position with all following sets Ω. In this case ι

needs to be recomputed. According to Table 1 value add(estΩ, lctΩ, i) for case
Through is ci(lctΩ − estΩ). Therefore the maximum value of add(estΩ, lctΩ, i)
over all activities in Through position with Ω is achieved by the activity with
the maximum capacity (lines 27–28).

Left One more time, activities a and b define set Ω such that estΩ = esta
and lctΩ = lctb; energy eEF

Ω is stored in variable eEF. However this time the
outer cycle is over variable a in arbitrary order (line 32) and inner cycle is over
variable b in non-decreasing order2 of lctb (line 36). For each a we start with the

1 Thanks to Armin Wolf for pointing out that condition esta < lctb on line 7 was
missing in the published version of this paper.

2 Thanks to Joseph Scott and Roger Kameugne for correcting a mistake in the ordering
that was in the published version of this paper.

Algorithm 2. Adjustments of esti

1 for i ∈ T EF do
2 est′i := esti ;
3 for b ∈ T EF do begin
4 // Cases “Inside” and “Right”
5 eEF := 0 ;
6 ι := −1;
7 for a ∈ T EF such that esta < lctb, in non-increasing order by esta do begin
8 i f lcta ≤ lctb then
9 eEF := eEF + eEF

a ;
10 else i f ι = −1 or min (eEF

a , ca (lctb − esta)) > min (eEF

ι , cι (lctb − estι))
11 then ι := a ;
12 reserve := C (lctb − esta)− eEF− (ttAfterEst [a]− ttAfterLct [b]) ;
13 i f ι 6= −1 and reserve < min (eEF

ι , cι (lctb − estι)) then
14 est′ι := max (est′ι, lctb −mandatoryIn(esta, lctb, ι)− ⌊reserve/ cι⌋) ;
15 end ;
16 // Case “Through”
17 ι := −1;
18 for a ∈ T EF in non-decreasing order by esta,
19 break ties by non-increasing esta +pEF

a

20 do begin
21 i f lcta ≤ lctb then begin
22 reserve := C (lctb − esta)− eEF− (ttAfterEst [a]− ttAfterLct [b]) ;
23 i f ι 6= −1 and reserve < cι(lctb − esta) then
24 est′ι := max (est′ι, lctb −mandatoryIn(esta, lctb, ι)− ⌊reserve/ cι⌋) ;
25 eEF := eEF − eEF

a ;
26 end ;
27 i f esta +pEF

a
≥ lctb and (ι = −1 or ca > cι) then

28 ι := a ;
29 end ;
30 end ;
31 // Case “Left”
32 for a ∈ T EF do begin
33 eEF := 0 ;
34 ι := −1;
35 Q := queue of activities i ∈ T EF sorted by non-decreasing esti +pEF

i
;

36 for b ∈ T EF in non-decreasing order by lctb do
37 i f esta ≤ estb then begin
38 eEF := eEF + eEF

b ;
39 while estQ.top +pEF

Q.top < lctb do begin
40 i := Q.dequeue ;
41 i f esti < esta and esta < esti +pEF

i
and

42 (ι = −1 or ci(esti +pEF

i
− esta) > cι(estι +pEF

ι
− esta))

43 then ι := i ;
44 end ;
45 reserve := C (lctb − esta)− eEF− (ttAfterEst [a]− ttAfterLct [b]) ;
46 i f ι 6= −1 and reserve < cι(estι +pEF

ι
− esta) then

47 est′ι := max (est′ι, lctb −mandatoryIn(esta, lctb, ι)− ⌊reserve/ cι⌋) ;
48 end ;
49 end ;
50 for i ∈ T EF do
51 esti := est′i ;

empty set Ω (line 33) and we gradually add into Ω activities b (line 38) such
that esta ≤ estb.

Activities which are in the Left position with Ω are I = {i, i ∈ T EF & esti <
estΩ < esti+pEF

i < lctΩ}. As we iterate over b, value lctΩ = lctb is increasing
and set I is growing: there are more activities i fulfilling condition esti +pEF

i <

lctΩ. To enumerate all activities i as they are added into I we create a queue
Q of all activities sorted by esti+pEF

i (line 35). Each time we change lctΩ by
adding b into Ω we also enumerate all activities i which newly fulfill condition
esti+pEF

i < lctΩ (lines 39–40). These activities are candidates to be added into
I. If they really belong to I (line 41) then we check whether i is better than ι

(line 42). Note that for position Left add(estΩ, lctΩ, i) = ci(esti+pEF

i − estΩ),
see Table 1. Finally, after each addition of b into Ω we check whether ι can be
updated by Ω (lines 45–47).

2.5 Time Complexity

Time complexity of Algorithm 2 is O(n2): there are nested cycles over variables
a and b with max n iterations each. The cycle on lines 39–44 is executed at most
n times for each a because each time i is removed from queue Q.

As explained before, the Algorithm 2 does not make all updates by the prop-
agation rule in one run because it updates only activity ι with the maximum
potential overload. The remaining activities are updated in the next run(s). Fur-
thermore it does not look over all subsets Ω′ ⊆ Ω to find the best possible
update as standard edge finding algorithm does. Therefore it is not possible to
directly compare time complexity O(n2) of Algorithm 2 with time complexities
O(kn2) and O(kn logn) of algorithms [5, 11].

Nevertheless, we believe that additional iterations needed to reach the fix-
point are not such a big disadvantage. There are several important aspects:

1. Even if the algorithm would fix all potential overflows with the current
bounds, new bounds may generate new potential overflows (especially after
applying symmetrical algorithm to update lcti). Therefore such an algorithm
would not be idempotent anyway – it would be still necessary to repeat the
algorithm until the fixpoint is found.

2. In practice most of the time the edge finding algorithm runs without changing
any bound. For benchmarks in section 5, the algorithm changes some esti
only in circa 30% of cases. Therefore it pays off to tune the algorithm for
the case where it does not propagate. Probability of two updates in two
consecutive runs is only 30%× 30% = 9%. Maybe we can save some of these
9% of runs, but it could slow down of the remaining 91% of runs.

3. For future research, it may be interesting to look for an algorithm with
output-sensitive time complexity such as O(n2 + ln) where l is the number
of changes done.

4. This is not the first propagation algorithm which using this “lazy” approach,
see for example the not-first/not-last algorithm in [10].

estΩ = 0 lctΩ = 10

lcti = 11esti = 1 eEF
i = 3

0 2 4 6 8 10

eTT
i = 4

pEF

i
= 3pTT

i
= 4

Fig. 7. An example for better counting of energy consumption in [estΩ , lctΩ].

2.6 Symmetry

Algorithm 2 updates values esti. An algorithm to update lcti is symmetrical.
The symmetry is to consider time going backwards. It is possible to use the
algorithm for esti to do updates also on lcti, the idea is to feed the algorithm
with symmetrical data about activities:

inputEsti = − lcti inputLcti = − esti

The resulting bounds have to be also interpreted symmetrically.

3 Improvements

This section describes further improvements of algorithms 1 and 2 by incorpo-
rating some ideas from energetic reasoning and not-first/not-last.

3.1 Improved Time Bound Adjustments

As explained before, esti can be updated if scheduling i at current esti would
cause overload in some interval [estΩ, lctΩ]. In this case there are some activities
which must be finished in [estΩ, lctΩ] before i can start. In particular, at least one
of these activities must end before i can start. So the new esti must be bigger
than minimum estj +pj over all activities j which contributes to reserve(Ω).
This new lower bound for esti can be sometimes better than the one computed
by the Algorithm 2. This idea is similar to the not-first propagation rule [7].

Note that the activity which ends before i in [estΩ, lctΩ] does not have to be
from set Ω. It could be also one of the activities which contributes to timetable
in [estΩ, lctΩ]. Furthermore, in the following section we will consider even more
activities in the computation of reserve(Ω).

As activities j come from different sources, computation of minimum estj +pj
can slow down the algorithm. Simpler but less accurate alternative is to precom-
pute for each activity a minimum estj +pj over all j ∈ T such that esta <

estj +pj . Then each time we compute est′i we can use this precomputed value
(for current a) as another lower bound. This approach is used for experimental
results reported at the end of this paper.

3.2 Improved Computation of Energy Consumption

Let us consider an example from Figure 7. What we see there is set Ω with
estΩ = 0, lctΩ = 10 and activity i 6∈ Ω with esti = 1, lcti = 11, pi = 7 and ci = 1.

Algorithm 3. Improved Overload Checking

1 for b ∈ T EF do begin
2 eEF := 0 ;
3 for a ∈ T EF in non-increasing order by esta do begin
4 i f lcta ≤ lctb then
5 eEF := eEF + eEF

a ;
6 else
7 eEF := eEF + ca max (0, lctb − (lcta − pEF

a
)) ;

8 i f C(lctb − esta) < eEF + ttAfterEst[a]− ttAfterLct[b] then
9 f a i l ;

10 end ;
11 end ;

Activity i has both fixed and free parts: pTT

i = 4, eTT

i = 4, pEF

i = 3, eEF

i = 3.
Timetable edge finding knows from timetable that at least eTT

i = 4 energy units
of i must be executed during [estΩ, lctΩ]. However as we can see in Figure 7
there are at least 6 energy units of i which must be executed during [estΩ , lctΩ].
So in this example timetable edge finding does better energy computation than
standard edge finding (4 energy units versus 0) however it is still less accurate
than energetic reasoning (6 energy units). In this section we show how to improve
energy computation in timetable edge finding to get also 6 energy units. It is a
step towards energetic reasoning, however only in limited cases.

Let’s generalize the situation from Figure 7. If i is in Right or Inside position
with Ω then we can further increase energy consumption in [estΩ, lctΩ] by:

sureIn(Ω, i) = ci max (0, lctΩ − (lcti− pEF

i))

Algorithm 3 shows how to take sureIn(Ω, i) into account in the overload checking
algorithm. When activity a is not added into Ω then it is in Inside or Right
position with all future sets Ω with lctΩ = lctb. As sureIn(Ω, i) does not depend
on estΩ we can add sureIn(Ω, a) to variable eEF (line 7).

Improved energy consumption can be also taken into account in Algorithm 2.
We do not present the modified algorithm in this paper. The general idea is to
first store improved values eEF for all pairs of activities a and b in a two di-
mensional array. Then we can use this array in the update algorithm instead
of eEF variable (be careful about duplicates in esta and lctb). To avoid count-
ing energy sureIn(Ω, i) twice for positions Inside and Right, it is necessary to
decrease add(estΩ, lctΩ, i) by sureIn(Ω, i) (lines 10 and 13) and also increase
mandatoryIn(esta, lctb, ι) by sureIn(Ω, i) at line 14.

4 Comparison with Standard and Extended Edge Finding

This section compares propagation power of timetable edge finding (without im-
provements from Section 3) with standard and extended edge finding algorithms.

Standard and extended edge finding propagation rules have two parts. First
part considers a set Ω ⊂ T and an activity i ∈ T \Ω. If one of the following two

conditions holds:

edge finding (EF):

C
(

lctΩ − estΩ∪{i}

)

< eΩ +ei

extended edge finding (EEF):

esti < estΩ < esti +pi &

C (lctΩ − estΩ) < eΩ +ci (esti+pi− estΩ)

then i must end after lctΩ (i.e. esti +pi > lctΩ) otherwise there is no solution.
However both algorithms search for a better update of esti. In particular they
enumerate all subsets Ω′ of Ω to find the best possible update:

esti := max

esti, max

Ω′⊆Ω

rest(Ω′,ci)>0

estΩ′ +

⌈

rest (Ω′, ci)

ci

⌉

(UPD)

where rest (Ω′, ci) = eΩ′ − (C − ci) (lctΩ′ − estΩ′)
To compare the filtering power of the rules above with timetable edge finding

it is best to concentrate on fixpoints3. In the following we prove that when
timetable edge finding reaches a fixpoint then neither standard nor extended
edge finding can propagate anything. We begin by the following lemma:

Lemma 1. If (EF) or (EEF) holds and timetable edge finding reached a fixpoint
(i.e. it cannot propagate any more) then esti +pi > lctΩ.

Proof. By contradiction: we will assume that esti +pi ≤ lctΩ. There are 3 cases:

1. (EEF) holds. In this case esti < estΩ < esti +pi ≤ lctΩ. Let us consider
total energy used by i and Ω in interval [estΩ, lctΩ] if i is scheduled on esti.
Without timetable we can estimate it as:

eΩ +ci(esti +pi − estΩ)

With timetable we can make a better estimation:

eEF

Ω +ttAfterEst(Ω)− ttAfterLct(Ω) + add(estΩ, lctΩ, i)

Computation with timetable is more precise therefore:

eΩ +ci(esti +pi − estΩ) ≤

≤ eEF

Ω +ttAfterEst(Ω)− ttAfterLct(Ω) + add(estΩ, lctΩ, i)

This together with (EEF) results in reserve(Ω) < add(estΩ, lctΩ, i). That
contradicts the assumption that timetable edge finding cannot propagate.

3 Note that rules (EF) and (EEF) together are monotonic, therefore by Domain Re-
duction Theorem [2] their repetitive application (in arbitrary order) leads to a unique
fixpoint. Similarly, propagation rule behind timetable edge finding algorithm (with-
out improvements from Section 3) is also monotonic, therefore its repetitive appli-
cation also leads to a unique fixpoint.

2. (EF) holds and esti ≥ estΩ. In this case if i is scheduled on esti then its
energy contribution to [estΩ , lctΩ] is ei (remember that we are assuming for
contradiction that esti +pi ≤ lctΩ). Again, this contribution is counted in
timetable and in add(estΩ , lctΩ, i). Therefore:

ei ≤ add(estΩ, lctΩ, i) + ttAfterEst(Ω)− ttAfterLct(Ω)

Together with (EF) it gives the contradiction reserve(Ω) < add(estΩ, lctΩ, i).
3. (EF) holds and esti < estΩ. Then condition (EF) can be rewritten as:

C (lctΩ − esti) < eΩ +ei because esti < estΩ

C (lctΩ − estΩ) < eΩ +ei −C (estΩ − esti)

C (lctΩ − estΩ) < eΩ +ei − ci (estΩ − esti) because C > ci

C (lctΩ − estΩ) < eΩ +ci (esti +pi − estΩ) because ei = ci pi

When i is scheduled on esti then its energy contribution to [estΩ , lctΩ]
is ci (esti +pi − estΩ). Together with the inequality above it means that
timetable edge finding propagates what is a contradiction. ⊓⊔

Proposition 1. When timetable edge finding reaches a fixpoint then both stan-
dard and extended edge finding cannot propagate anything.

Proof. By contradiction: we will assume that timetable edge finding reached a
fixpoint, i.e. there is no potential overload, however standard or extended edge
finding can propagate, i.e. there is i, Ω and Ω′, Ω′ ⊆ Ω, such that (EF) or (EEF)
holds and (UPD) improves esti using Ω′.

We are going to prove (for the contradiction) that timetable edge finding
propagates for Ω′ and i. By Lemma 1 we know that lctΩ < esti +pi. And
because Ω′ is a subset of Ω we conclude lctΩ′ ≤ lctΩ < esti+pi. We distinguish
two cases:

1. esti ≤ estΩ′ . In this case when i is scheduled on esti then its energy con-
tribution to [estΩ′ , lctΩ′] is ci (lctΩ′ − estΩ′). However because Ω′ is used by
(UPD) to improve esti it must hold:

0 < rest(Ω′, ci)

0 < eΩ′ − (C − ci) (lctΩ′ − estΩ′)

C (lctΩ′ − estΩ′) < eΩ′ +ci (lctΩ′ − estΩ′)

Therefore timetable edge finding propagates what is a contradiction.

2. esti > estΩ′ . In this case if i is scheduled on esti then its energy contribution
to [estΩ′ , lctΩ′] is ci (lctΩ′ − esti). However because (UPD) improves esti:

esti < estΩ′ +

⌈

rest(Ω′, ci)

ci

⌉

esti < estΩ′ +

⌈

eΩ′ − (C − ci) (lctΩ′ − estΩ′)

ci

⌉

0 <

⌈

ci(estΩ′ − esti) + eΩ′ − (C − ci) (lctΩ′ − estΩ′)

ci

⌉

0 < ci(estΩ′ − esti) + eΩ′ − (C − ci) (lctΩ′ − estΩ′)

C (lctΩ′ − estΩ′) < eΩ′ +ci (lctΩ′ − esti)

Therefore timetable edge finding propagates what is a contradiction. ⊓⊔

5 Experimental Results

The presented algorithm (including the improvements described in Section 3)
was tested on 438 open instances of the RCPSP problem from PSPLIB [1]. The
RCPSP problem is to find the shortest possible schedule for a set of activities
while fulfilling precedence constraints and cumulative resource constraints. For
the open instances the minimum possible length l of the schedule is still not
known, but PSPLIB keeps track of the best published lower and upper bounds
(LB and UB such that LB ≤ l ≤ UB), including recent results of Schutt et al.
[8, 9]. PSPLIB does not contain results of Laborie [4], however these are with a
single exception (lower bound 83 for instance j90 25 5) overcome by results of
Schutt et al.

We improved current best known lower bounds using destructive lower bounds:
first we try to find a solution with length equal to the current best known LB.
We used simple SetTimes search as recapped in [3] and after each decision we
propagate all constraints to fixpoint (using timetable edge finding for cumu-
lative resources). If there is no solution then we continue by trying to find a
solution with length LB+1. If that also fails then we try LB+2 and so on. The
time limit for each improvement step is 60 seconds. Experiments were done on
Intel(R) Core(TM)2 Duo CPU T9400 on 2.53GHz.

Table 2 summarizes the results. Open instances are split into 3 groups by
size. For each group there is the number of open instances in the group, num-
ber of instances with LB improved by one (column LB+1), by two etc. For 9
instances we were able to improve LB without starting SetTimes search, that is,
propagation itself found the problem infeasible. Detailed results can be found at
http://vilim.eu/petr/cpaior2011-results.txt.

Acknowledgment I would like to thank Philippe Laborie and Jerôme Rogerie
for their help with the algorithm and with this paper. I also thank to anonymous
referees for providing very useful feedback.

Size # Instances LB+1 LB+2 LB+3 LB+4

60 49 5 3 - -
90 78 24 10 - -
120 311 82 32 9 4

Table 2. Experimental results

References

[1] Project scheduling problem library. URL
http://webserver.wi.tum.de/psplib.

[2] Krzysztof R. Apt. The essence of constraint propagation. Theoretical Com-
puter Science, 221(1–2):179–210, 1999.

[3] Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large
neighborhood search for cumulative scheduling. In Proceedings of the Fif-
teenth International Conference on Automated Planning and Scheduling
(ICAPS 2005), pages 81–89. AAAI, 2005.

[4] Philippe Laborie. Complete MCS-based search: Application to resource
constrained project scheduling. In Leslie Pack Kaelbling and Alessandro
Saffiotti, editors, IJCAI, pages 181–186. Professional Book Center, 2005.

[5] Luc Mercier and Pascal Van Hentenryck. Edge finding for cumulative
scheduling. Informs Journal of Computing, 20(1):143–153, 2008.

[6] Claude Le Pape Philippe Baptiste and Wim Nuijten. Constraint-Based
Scheduling: Applying Constraint Programming to Scheduling Problems.
Kluwer Academic Publishers, 2001.

[7] Andreas Schutt, Armin Wolf, and Gunnar Schrader. Not-first and not-last
detection for cumulative scheduling in O(n3 logn). In 16th International
Conference on Applications of Declarative Programming and Knowledge
Management, INAP 2005, pages 66–80. Springer, 2005.

[8] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace.
Why cumulative decomposition is not as bad as it sounds. In CP’09: Pro-
ceedings of the 15th international conference on Principles and practice of
constraint programming, pages 746–761. Springer-Verlag, 2009.

[9] Andreas Schutt, Thibaut Feydy, Peter Stuckey, and Mark Wallace. Explain-
ing the cumulative propagator. Constraints, pages 1–33–33, 2010. ISSN
1383-7133. doi: 10.1007/s10601-010-9103-2.

[10] Philippe Torres and Pierre Lopez. On not-first/not-last conditions in dis-
junctive scheduling. European Journal of Operational Research, 127(2):332–
343, 1999.

[11] Petr Viĺım. Edge finding filtering algorithm for discrete cumulative re-
sources in O(kn log n). In CP’09: Proceedings of the 15th international con-
ference on Principles and practice of constraint programming, pages 802–
816. Springer-Verlag, 2009.

