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Abstract. This paper presents a new constraint programming search al-
gorithm that is designed for a broad class of scheduling problems. Failure-
directed Search (FDS) assumes that there is no (better) solution or that
such a solution is very hard to find. Therefore, instead of looking for
solution(s), it focuses on a systematic exploration of the search space,
first eliminating assignments that are most likely to fail. It is a “plan B”
strategy that is used once a less systematic “plan A” strategy – here,
Large Neighborhood Search (LNS) – is not able to improve current so-
lution any more. LNS and FDS form the basis of the automatic search
for scheduling problems in CP Optimizer, part of IBM ILOG CPLEX
Optimization Studio.

FDS and LNS+FDS (the default search in CP Optimizer) are tested
on a range of scheduling benchmarks: Job Shop, Job Shop with Opera-
tors, Flexible Job Shop, RCPSP, RCPSP/max, Multi-mode RCPSP and
Multi-mode RCPSP/max. Results show that the proposed search algo-
rithm often improves best-known lower and upper bounds and closes
many open instances.
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1 Introduction

Generic search algorithms have become quite successful in constraint program-
ming solvers in recent years, see for example impact-based search [22], weighted-
degree heuristics [6] and activity-based search [18]. However, the authors are
aware of only one attempt to use such a generic search (in particular impact-
based search) for scheduling problems [37].



One of the obstacles for using the search algorithms mentioned above for
scheduling is that they make branching decisions of the form x = n ∨ x 6= n,
where x is a variable and n is a value from its domain. In case of scheduling the
decision x 6= n usually does not propagate at all because the majority of propaga-
tion algorithms take into account only minimum and maximum values of domains
(see propagation by temporal constraint networks [7], timetable [4, chapters 3.3.1
and 2.1.1] or family of edge-finding algorithms for unary and discrete cumulative
resources [35, 36]). A possible solution is to branch on disjunctions as proposed
in [37]. However, this approach is hard to generalize from disjunctive resources
to other scheduling constraints. Failure-directed search overcomes this problem
in a different way: it branches by splitting a domain into two disjoint intervals
so that one of the bounds of the domain is always changed.

2 Scheduling Using Constraint Programming

In this paper we consider a broad class of scheduling problems with activities,
precedences between activities, unary or discrete cumulative resources and also
alternatives and optional activities. For a more detailed description on modeling
those problems using Constraint Programming (and in particular using IBM
ILOG CP Optimizer that implements FDS) please refer to [12, 14]. Here we
briefly introduce the main concepts used in this paper.

Interval variable is a decision variable that represents a task/activity with
unknown start and end times. It is possible to express the fact that the task
is optional and may be left unperformed (e.g. because an alternative task
was used instead). More formally domain Dv of an interval variable v is a
subset of:

{⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}
Where ⊥ represents the case that the task is left unperformed. When Dv = ⊥
then we say that v is absent, when ⊥ 6∈ Dv then v is present and otherwise
then v is optional.

Precedence models the fact that end/start of some interval variable must be
before/after the start/end of another interval possibly with minimum/max-
imum delay (the delay can be negative). Precedences are propagated by a
dedicated global constraint called the Temporal Network as described in [12]
(inspired by [7]).

Unary resource (noOverlap) forbids any pair of intervals variables from a
given set to overlap (e.g. because all the interval variables require the same
machine). There has been a lot of work on propagation of unary resources—
we are using the methods described in [35].

Discrete cumulative resource models a machine or any other resource that
can process multiple tasks at once but which has a limited capacity for
processing tasks simultaneously. In CP Optimizer, cumulative resources are
modeled by cumulative function expressions. Again, there are many algo-
rithms for propagating this constraint: we are using Timetable Edge Find-
ing [36] and Timetabling [4, chapters 3.3.1 and 2.1.1].



Alternative models an alternative between several optional intervals. Alterna-
tives are used to model, for example, different modes of a task. Propagation
of alternatives is described in [12].

3 Choices

Failure-directed search does not operate on decision variables directly, instead
it works on a set of binary choices. A choice is an abstraction of anything that
needs to be decided in order to obtain a solution. An obvious example of a choice
is assigning a value to a variable (e.g. choice between x = 5 and x 6= 5). However
failure-directed search is using domain splitting instead (see e.g. [9]) and the
following kinds of choices:

Presence choice: for an interval variable v whether v is present (⊥ 6∈ Dv) or
absent (Dv = {⊥}). This kind of choice is used only for optional interval
variables.

Start time choice: for an interval variable v and a time t whether startOf(v) ≤
t or startOf(v) > t. Function startOf(v) returns start time of interval variable
v in a solution. Start time choice can be used only on a present interval
variable v, if v is still optional then the presence choice must be applied first
(see later).

At the highest level, failure-directed search knows only a set of choices that needs
to be decided: it is ignorant of what the choices are doing.

For now we assume that all possible presence choices and start time choices
are generated before the search starts. The topic of actual set of choices is further
discussed in Section 6.1.

FDS search operates under the assumption that the current problem is in-
feasible, or alternatively, if there is a solution then it is hard to find (heuristic
methods already failed to find it). Therefore it supposes that it will explore the
whole search space (to prove infeasibility or optimality) or at least a significant
part of it (before a solution is found).

With this assumption in mind, failure-directed search gives up on the idea
of guiding the search towards possible solutions. It does exactly the opposite:
it drives the search into conflicts in order to prove that the current branch is
infeasible. Choices that fail the most are preferred. From two branches of a choice
the one that fails the most is preferred. It is the well-known first-fail principle
but applied also on the branch ordering.

Let’s assume for a while that it is we, not the search algorithm, who decide
how the search space is explored. We are given an infeasible problem, a set of
predefined choices and our task is to build a complete but small search tree. We
can imagine it as a game: there is a box of bricks (the choices) and the task is
to build from them a search tree in a depth-first way. Our task is to repeatedly
pick a choice from the box and add it into the tree. When we pick a choice, it
is possible that the choice is already decided, in this case we continue picking.



Otherwise the choice is added into the tree and it produces two new branches.
Thanks to constraint propagation branches can fail and therefore one of the
following three possibilities will happen (see Figure 1):

0-fails 1-fail
2-fails

(closing choice)

Inner node

Fail

Fig. 1. Types of internal nodes

0-fails: Neither branch fails. From our tree-builder point of view it is a disap-
pointment because we ended up increasing the number of open branches.
Instead of making our tree smaller we ended up increasing it. However at
some points, especially near the root node, there is no other way.

2-fails: Both branches fail. In this case lets calls this choice a closing choice
because it closes the current branch. As we are looking for a small search
tree, closing choice is the best that can happen. Search tree cannot be fully
explored without closing choices.

1-fail: Only one branch fails. We did not close the current branch, but at least
we did not open a new one. Constraint propagation tightened the bounds,
so we have better chances to close the branch next time.

Of course we do not know in advance which of the three possibilities above will
happen. Instead FDS uses a system of ratings that reflects recent behavior of a
choice.

4 Ratings

Ratings are the measure that failure-directed search uses in order to pick the
next choice to explore. Smaller ratings are preferred. The algorithm simply picks
an available choice with the best rating.

For every available choice c, the system maintains separate ratings for its
positive and negative branches4: rating+[c] and rating−[c]. Both rating+[c] and
rating−[c] are initially set to 1.0. Rating of choice c is defined as:

rating[c] = rating+[c] + rating−[c] (1)

4 Note the difference between positive/negative branch and left/right branch. When a
choice is generated one of the branches is called positive and the second negative and
this assignment does not change. It is up to the search algorithm to decide which of
the two branches will be explored first and become the left branch of a node.



Additionally, for every search depth, d there is average rating of choices on the
given depth: avgRating[d]. Its initial value is also 1.0.

Like impact-based search [22], FDS computes an estimate 0 ≤ R ≤ 1 of
the reduction in effort to search the rest of the problem, given a particular
assignment. For example, [22] uses the ratios of the search space sizes (using
variable domains only) before and after propagation of each decision:

R =
|D′x1

| × · · · × |D′xn
|

|Dx1 | × · · · × |Dxn |

where Dv and D′v are the domains of variable v before and after the decision,
respectively.

Each time a branch of a choice c is explored its rating rating+[c] or rating−[c]
is updated using the estimation of search effort reduction. The computation
starts with localRating:

localRating :=

{
0 if the branch fails immediately

1 +R otherwise
(2)

Notice that this measure puts a much greater emphasis on failures than tradi-
tional impact-based search, making FDS much more aggressive in seeking out
immediate failures during search.

The local rating of a decision depends a lot on the current subproblem. In
particular the same decision usually has a higher local rating near the root node
than in the depths of the search tree. To compensate for this effect, localRating
is normalized using the average rating on the current depth d. With this in mind,
the rating of a branch (positive or negative) is updated to:

rating+/−[c] := α · rating+/−[c] + (1− α) · localRating

avgRating[d]
(3)

Where α is a constant controlling the speed of decay (typical values of α range
from 0.9 to 0.99). Note that update of the rating of the branch by (3) has
immediate effect on rating[c] according to (1).

As ratings are decaying by factor α, they reflect the recent behavior of the
choice. Ratings can change quite quickly, especially when closing decisions are
encountered.

5 Search Algorithm

The search algorithm is using several data structures to store choices according
to their current state, see Figure 2. The state of a choice can be:

Unchecked: The choice was not picked for branching in the current branch.
Initially all choices are unchecked. Unchecked choices are stored in a heap
that allows fast access to the choice with the best rating.
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Fig. 2. Choice states and data structures

Decided: The choice was picked for branching, it was found applicable (i.e. the
choice is not resolved or waiting, see below) and one of the branches was
applied. The choice remains decided until the search backtracks from the
decision about the choice. Decided decisions are kept on a stack in order to
facilitate fast backtracking.

Resolved: Again the choice was already picked for branching but it was found
to be already resolved. e.g. consider a choice is between startOf(v) ≤ 5 and
startOf(v) > 5 where v is a present interval variable. If in the current node
startOf(v) is known to be in interval [7, 12] then there is no point in branching
on the choice. The choice remain resolved until the search backtracks above
the point where the choice was found to be resolved. Therefore resolved
choices are also kept on the stack.

Waiting: Let’s consider once more the choice between startOf(v) ≤ 5 and
startOf(v) > 5 but this time consider that v is an optional interval vari-
able. The choice does not split the domain of v into two disjunctive subsets:
the case v is absent is possible in both branches. For this reason choices like
this one can be applied only when v is already present. The choice remains
waiting as long as v is optional. In order to be activated at the right time
the choice must monitor the status of v. Once v becomes present the choice
automatically returns into the heap and becomes unchecked again.

The search proceeds as follows, see Algorithm 1. A choice with the best
rating is taken from the heap and its state is checked (line 7). If it is waiting then



1 pick :
2 i f heap is empty then begin
3 solution found ;
4 add improving objective cut ;
5 goto backtrack ;
6 end ;
7 remove choice c with the best rating from heap ;
8 i f c is waiting then begin
9 let c monitor the underlying interval variable ;

10 goto pick ;
11 end ;
12 add c to stack ;
13 i f c is resolved then
14 goto pick ;
15 b := branch of c with the better rating
16 propagate :
17 apply branch b ;
18 propagate until a fixed point ;
19 update rating of branch b ;
20 i f not infeasible then goto pick ;
21 backtrack :
22 let c is the last choice with open branch on the stack ;
23 i f there is no such c then
24 terminate ; // whole search space was explored
25 put back into the heap all choices from the stack until c ;
26 b := the unexplored branch of c ;
27 goto propagate ;

Algorithm 1. Search algorithm

another choice is taken from the heap. Similarly if the choice is resolved then it is
put on the stack and also another choice is drawn. This process continues until
an applicable choice is found (line 15). The applicable choice is decided (the
branch with the better rating first), put on stack and constraint propagation
is run until the fixed point. The process continues this way until constraint
propagation finds the current subproblem infeasible (dead end, line 21). In this
case the search backtracks: choices are removed from the stack and put back into
the heap until the last choice with open branch is found. The choice is switched
(the right branch is applied), constraint propagation is run and branch rating is
updated.

6 Other Components

The previous section describes the basic failure-directed search. However there
are more components that contribute to the performance of failure-directed
search.

6.1 Initial set of choices

FDS as described in so far requires that all possible choices to be generated before
the search starts. However it may be more efficient to start with only a subset
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Fig. 3. Consider present interval variable v with duration pv, earliest starting time estv
and latest completion time lctv. If lctv − estv < 2 pv then v always occupies interval
[lctv − pv, estv + pv]. This interval is called mandatory part.

of choices and generate additional ones when needed. In particular, inspired by
search techniques for square packing described in [26, 5], the initial set of choices
only makes sure that if they are all decided then every interval variable is either
absent or has mandatory part (see Figure 3). Then, if the search gets to a point
when all choices have been decided but some decision variables remain unfixed,
then either a more traditional depth-first approach can be used to complete the
solution, or alternatively more choices can be generated at that point, allowing
the search to continue.

6.2 Restarts and nogoods

Restarting the search is a widely used technique to improve performance by
breaking out of heavy-tailed behavior typical of depth-first search [8, 19]. Similar
generic search algorithms also use restarts [22, 18, 24].

The search is restarted for the first time after 100 backtracks. The restart
limit is increased by 15% after each restart. These values correspond to the
default parameterization of CP Optimizer (parameters RestartFailLimit and
RestartGrowthFactor).

Nogoods from restarts are recorded and propagated as described in [15],
which is also the same manner in which nogoods are propagated for integer
search inside CP Optimizer.

FDS assumes that it will be restarted many times before it fully explores the
search space. The only result that remains after each restart is a set of nogoods.
The shorter they are, the easier they are to apply. That is the reason why FDS
always explores first the branch that is more likely to fail.

6.3 Strong branching and shaving

Ratings try to estimate the behavior of choices, but they are still only estima-
tions. At the top of the search tree, where it is most important to pick the right
choices, the ratings are most imprecise.

Therefore at the root node of each restart it pays off to pre-evaluate a lim-
ited number of best choices to find out their “actual” behavior. FDS tries both



branches of a number of best applicable choices from the heap and updates their
ratings. After that it picks for branching a choice with a branch with the best
localRating as defined by (2).

The process of pre-evaluation of different choices before committing to one
of them is not new, see for example strong branching in MIP solvers [1] and
shaving in CP (e.g. [29]). Shaving in particular has a different goal: to find a
choice that has an infeasible branch and improve the filtering by applying the
opposite branch. FDS does a similar thing: if one of the choices evaluated during
strong branching has an infeasible branch then the opposite branch is applied
and the pre-evaluation process continues with the reduced set of choices.

Finally while evaluating one of the choices, it can happen that some variable
x is updated by constraint propagation in similar way in both branches. For
example, minimum start time of x is increased from 0 to 7 in one branch and
to 10 in the second branch. In this case the minimum start time of x can be
increased from 0 to 7 immediately.

6.4 Coupling with LNS

As explained earlier, failure-directed search is designed for the case when the
problem is infeasible or a solution is very hard to find. As FDS heads first into
conflicts, it finds solutions just by a happy accident. If there are many easy-to-
find solutions then FDS may not work well.

Therefore FDS is a good “plan B”: when other approaches fail or are not able
to improve any more then FDS can explore the whole search space. In another
words, it pays off to couple FDS with another “plan A” strategy that is able to
find near-optimal solutions and this way limit the search space for FDS.

In CP Optimizer the “plan A” strategy is a self-adapting Large Neighbor-
hood Search (LNS) [11]. It consists of a process of continual relaxation and
re-optimization: a first solution is computed and iteratively improved. Each it-
eration consists of a relaxation step followed by a re-optimization of the re-
laxed solution. This process continues until some condition is satisfied, typically,
when the solution can be proved to be optimal or when a time limit is reached.
In CP Optimizer this approach is made more robust by using portfolios of large
neighborhoods and completion strategies in combination with Machine Learn-
ing techniques to converge on the most efficient neighborhoods and completion
strategies for the problem being solved. Furthermore, in case of non-regular ob-
jective function (like earliness costs), some completion strategies are guided by
a linear relaxation of the problem solved with LP techniques [13].

7 Experimental Results

FDS together with LNS are tested on a number of classical scheduling bench-
marks listed below. Only instances that are still open are considered. The pur-
pose of the experiments is solely to show that FDS is powerful enough to close



1 LB := best known lower bound − 1 ;
2 checkLB :
3 solve with upper bound set to LB and specified time limit ;
4 i f solution found then begin
5 terminate ; // Optimal solution found
6 end ;
7 i f infeasible then begin
8 LB := LB+1;
9 goto checkLB ;

10 end ;
11 terminate ; // Time limit was hit. LB is new valid lower bound

Algorithm 2. Destructive lower bounds

number of open problems. A detailed study of individual features of FDS is out
of scope of the paper.

Experiments are performed on a machine with Intel Core i7 2.60GHz proces-
sor (4 cores and hyperthreading) and 16GB RAM using slightly modified5 IBM
ILOG CP Optimizer version 12.6.1. The instances are solved by two different
methods:

LNS+FDS: This configuration is just the standard automatic search of CP
Optimizer with a parameterization to use two CPU threads (Workers=2)
and more aggressive FDS (FailureDirectedSearchEmphasis=0.99). At the
beginning, both threads use LNS, but once LNS is not able to improve the
current solution for some time (determined automatically by auto-tuning in
CP Optimizer) one of the two threads switches from LNS to FDS.

DestructLB: This approach tries to improve best known lower bounds by prov-
ing them wrong iteratively, see Algorithm 2. This time only one CPU thread
is used and FDS is started immediately6. In order to make a fair comparison
with the state of the art, the algorithm first tries to confirm the current best
known lower bound and only then tries to improve it. The time limit for
DestructLB specified in the benchmark description is used for each iteration
of the algorithm, the total running time of the algorithm is not limited (this
way the result is not biased by the initial value of the lower bound).

Results are summarized in Table 1. Column Instances gives the number of
open instances of the benchmark, the Lower bound and Upper bound improve-
ments columns give the number of lower and upper bounds improved by CP
Optimizer respectively. The last column represents the number of instances that
were closed by CP Optimizer. Detailed lists of improved lower and upper bounds
can be found at http://ibm.biz/FDSearch.

5 With minor performance improvements.
6 In version 12.6.1 IBM ILOG CP Optimizer does not offer yet a public API to run

FDS directly and replicate the reported results.



Benchmark set
Number of
instances

Lower bound
improvements

Upper bound
improvements

Closed
instances

JobShop 48 40 3 15
JobShopOperators 222 107 215 208
FlexibleJobShop 107 67 39 74
RCPSP 472 52 1 0
RCPSPMax 58 51 23 1
MultiModeRCPSP (j30) 552 No reference 3 535
MultiModeRCPSPMax 85 84 77 85

Table 1. Results summary

7.1 Job Shop (J ||Cmax)

For job shop scheduling problems, we focus on the open classical instances of [28]
(tail*, 32 open instances), [2] (abz*, 3 open instances), [27] (swv*, 9 open
instances) and [38] (yam*, 4 open instances). The current lower and upper bounds
for these instances were gathered from [30] and [31].

In the case of job shop, computation of current best known lower and upper
bounds usually took a very long time. e.g. computation of upper bounds in [21]
used a time limit of 30000 seconds (8 hours 20 minutes) using a dedicated local
search algorithm. FDS is not a local search, it explores the whole search space,
so an even bigger time limit would make sense. We decided to use the same
time limit of 30000s but two threads in LNS+FDS approach and 10 minutes per
iteration for DestructLB.

The DestructLB approach, despite the small time limit, was able to improve
lower bounds for 40 of the 48 instances and close 4 instances (improving the upper
bound for 2 of them). The LNS+FDS approach closed 15 instances, including the
4 instances already closed by DestructLB. Solve times ranged from 50 minutes
(tail12) to 7.5 hours (tail21).

This benchmark illustrates the benefits of the automatic search of CP Opti-
mizer that couples LNS and FDS together using two threads (LNS+FDS). Let’s
take a closer look at instance tail19 by Taillard. After 388s LNS finds a solu-
tion with makespan 1352 which is only 1.5% from the optimum value of 1332.
Such a tight upper bound limits the search space for FDS and at time 1061.2s
FDS finds a solution with makespan 1351. This solution is passed to LNS and
LNS improves it immediately (in 0.32s) to 1350. LNS continues improving the
solution, reaching the optimal value of 1332 at 8518s. In parallel, FDS is sys-
tematically exploring the search space while taking advantage of the new upper
bounds as they come from LNS. Finally after 12853s in total, FDS proves that
there is no better solution and the search stops.

In general, FDS is able to help LNS to escape local minima by providing a new
(possibly totally different) solution. LNS can use this solution as a new starting
point and further improve it. And in the opposite direction, LNS provides tight
upper bounds to FDS and removes from FDS the burden to guide the search



towards possible solutions. This way FDS can concentrate only on the fastest
way to explore the search space.

7.2 Job Shop with Operators

The job shop scheduling problem with operators is an extension of the classical
job shop scheduling problem proposed in [3] where each operation also requires
an operator to aid in the processing of the operation (beside the machine).
An operator can process only one operation at a time and the total number
of operators in the shop is limited. The whole set of operators is modelled by
a single discrete cumulative resource. Results are compared with the current
best known lower and upper bounds provided by the approach described in [17]
on the 222 open problems. We used a time limit of 600s for the LNS+FDS
approach and 300s per iteration of the DestructLB algorithm. Both LNS+FDS
and DestructLB were able to close many instances. In all, 208 instances were
closed, with 107 lower bounds and 215 upper bounds being improved.

7.3 Flexible Job Shop (FJ ||Cmax)

Flexible job shop scheduling problems are an extension of classical job shop
scheduling problems for production environments where it is possible to run an
operation on more than one machine. Current lower and upper bounds were
taken from [32]7. Out of the 107 open instances, the LNS+FDS approach closes
74 instances (resulting in an indirect improvement of 61 lower bounds among
these instances) and improves 39 upper bounds. Those results with LNS+FDS
were obtained using a time-limit of up to 8h. The DestructLB approach with
a time limit of 3600s per iteration was able to additionally improve 10 lower
bounds.

7.4 RCPSP (PS |prec|Cmax)

For Resource Constrained Project Scheduling Problems (RCPSP), we focus on
the 472 open instances of the PSPLib [10]. Current lower and upper bounds were
taken from [24].

This benchmark allows direct comparison with the approach of [24] as they
also compute destructive lower bounds in exactly the same way on a machine
with the same speed. Therefore we used the same time limits as [24]: 10 minutes
for LNS+FDS and 10 minutes for one iteration of DestructLB. The DestructLB
approach improves 52 lower bounds (by 1, 2 or 3), proves the same lower bound
as [24] for 330 instances and is not able to prove the same lower bound within
the time limit for 90 instances. We conclude that in terms of lower bounds
FDS achieve similar results as [24] despite the fact that FDS does not use use
explanations as Schutt et al. does.

7 Note that this page already includes most of the results reported in the present
article under the reference [CPO].



In terms of upper bounds, LNS+FDS is clearly worse despite using two
threads instead of one. Only one upper bound is improved and only in 78 cases
the upper bound is the same. No open instance of RCPSP was closed.

7.5 RCPSP/max (PS |temp|Cmax)

For Resource Constrained Project Scheduling Problems with minimal and max-
imal time lags (RCPSP/max), we use the best known lower and upper bounds
reported in [25]. We used again a time limit of 10 minutes for both LNS+FDS
and DestructLB iteration.

The DestructLB approach improves lower bound for 56 out of 57 open in-
stances and proves optimality for psp j30 73. However as [25] did not compute
destructive lower bounds, a direct comparison is not possible.

The LNS+DFS approach improves best upper bounds for 23 instances, for
10 instances it reaches the same upper bound (again proving optimality for
psp j30 73) but produces a poorer upper bound for 25 instances. Direct com-
parison with [25] is again not possible because we used 2 threads on a faster
machine.

To summarize, one instance is closed by CP Optimizer and the average gap
(defined as (UB− LB)/UB) is reduced from 23.37% to 13.62%.

7.6 Multi-mode RCPSP (MPS |prec|Cmax)

Multi-Mode Resource Constrained Project Scheduling Problems are extensions
of classical RCPSP allowing for alternative execution modes of the tasks. We
worked with the j30* instances of the PSPLib [33] (all other instances are
closed). The bounds reported in [33] include some recent improvements described
in [20]. As [33] reports only upper bounds, we worked with all the 552 feasible
instances of the problem. We used a time limit of 3600s for LNS+FDS and
600s per iteration for DestructLB. Both LNS+FDS and DestructLB were able
to close many instances. In all, 535 instances were closed (almost 97%) and 3
upper bounds are improved.

7.7 Multi-mode RCPSP/max (MPS |temp|Cmax)

Multi-Mode Resource Constrained Project Scheduling Problems with minimal
and maximal time lags combine the two extensions of the classical RCPSP. We
focused on the 85 open instances of the PSPLib (7 in the mm50 group, 79 in the
mm100 group) given the lower and upper bounds reported in [34]. These bounds
include some recent improvements described in [23].

DestructLB with a time limit of 300s was able to improve 53 lower bounds.
LNS+FDS using a time limit of 1800s was able to improve 73 upper bounds.
The combination of the two approaches closes 10 instances.

In fact, this benchmark turns out to be very peculiar because the renewable
(cumulative) resources are not the hardest part of the problem. We exploited this



remark to implement an alternative approach that first solves a MIP relaxation of
the problem that exactly handles all constraints except the renewable resources.
The MIP model has numerical variables si for the start time of each activity i and
boolean variables mij for selecting the mode of activity i. Renewable resources
are relaxed using a basic energy reasoning over the schedule horizon. The MIP
is solved using CPLEX 12.6.1. The optimal makespan of the MIP clearly is a
lower bound on the makespan of the original problem. In a second step, we find
with CP Optimizer the optimal solution to the RCPSP/max problem that uses
the optimal mode allocation of the MIP. It turns out that for 83 instances out
of 85, the optimal makespan of this problem is equal to the MIP lower bound
and thus is an optimal solution to the original problem. For the 2 remaining
instances, we re-injected the optimal solution of the RCPSP/max as a warm start
into the original Multi-Mode RCPSP/max model using CP Optimizer starting
point functionality. The LNS+FDS approach then improves on the starting point
and produces a solution with a makespan equal to the MIP lower bound. In
conclusion, all 85 open instances were closed.

8 Analysis of FDS Behavior

It is still not completely clear why FDS is so successful on some problem in-
stances. Therefore we tried to analyze the behavior of FDS in order to get better
understanding. This section summarizes our observations.

One (perhaps not surprising) observation is that FDS produces unbalanced
search trees. Left branches often fail immediately or at least they are explored
much faster than right branches. Common are long chains of 1-fail nodes ended
by a closing node as demonstrated in Figure 4.

An important feature of failure-directed search is that once a closing choice
is found, it is likely to be reused again immediately after the backtrack. It is
common that the same closing choice is reused several times before it is no
longer closing. This way the search can quickly escape even from deep search
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depths. Similarly 1-fail choices are also usually quickly reused. The behavior of
FDS is in this sense very similar to the one of quick shaving [16].

A choice chosen for branching in a root node after a restart is most likely to
be a choice that was recently closing before the restart. As usual, the choice is
probably unbalanced, e.g. it could be a choice between start time in interval [1, 4]
versus [5, 100]. Therefore when the left branch of the root node is proved infeasi-
ble, FDS improves the domain only a little (from [1, 100] to [5, 100]). However as
the choice used to be closing, even such a small improvement is probably impor-
tant. As FDS accumulates those small improvements (and nogoods in general),
search space is reduced and constraint propagation becomes stronger.

Heading first into conflict The importance of heading first into conflict can
be demonstrated for example on job shop instance tail50. It takes 465 seconds
for FDS to prove that there is no solution with makespan 1832 or lower. Lets
compare that with reverse branching order: pick the choices as usual (low rating
first) but switch the branching order to worse rating first. With this change the
same proof takes 1023 seconds.

The reason why branching order is important seems to be the fact that the
search is periodically restarted. When low rating branches are explored first then
the generated nogoods from restarts are shorter and easier to apply.

Preferring conflicts We perform one more experiment with the same job
shop instance, this time to demonstrate the importance of preferring immediate
failures in computation of ratings. Lets replace 1 +R by R in formula (2):

localRating :=

{
0 if the branch fails immediately

R otherwise

This new version of localRating resembles much more impact-based search. With
this change the proof that used to take 465 seconds does not finish within 24
hours.

9 Conclusions

Using failure-directed search we were able to improve the state-of-the-art results
for a number of scheduling benchmarks covering disjunctive and cumulative re-
sources, minimum and maximum lags and multiple modes. Results demonstrate
that FDS and CP Optimizer’s automatic search (LNS+FDS) can compete with
specialized algorithms and even outperform them.

Failure-directed search has been an integral part of the CP Optimizer auto-
matic search algorithm since version 12.6.0.
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intervals. part II: an algebraical model for resources. In: Lane, H.C., Guesgen, H.W.
(eds.) Proceedings of the 22nd International Florida Artificial Intelligence Research
Society Conference, May 19-21, 2009, Sanibel Island, Florida, USA. AAAI Press
(2009)
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