
BATCH PROCESSING WITH SEQUENCE DEPENDENT
SETUP TIMES: NEW RESULTS

PETR VILÍM

Charles University, Faculty of Mathematics and Physics, Malostranské náměstı́ 2/25,
Praha 1, Czech Republic, e-mail: vilim@kti.mff.cuni.cz

Abstract: A constraint propagation (filtering) turned out to be an efficient method how to
reduce search space for backtrack-based algorithms. This paper brings several improvements
of filtering methods for batch processing with sequence dependent setup times.

The first one is domain filtering based on a precedence graph—such filtering can be useful
even when no precedences are given at the start. I describe how to easily detect all the
precedences found by the edge-finding algorithm and how to maintain a transitive closure
of the precedence graph in reasonable time. The results for the precedence graph hold also
for the usual disjunctive scheduling (unary resource) because it is a special case of batch
processing (without any setups).

This paper also proposes a new, more effective version of the not-first/not-last filtering
algorithm for batch processing with sequence dependent setup times.

1 INTRODUCTION

The batch processing with sequence dependent setup
times is an extension of classical disjunctive schedul-
ing (for the definition of disjunctive scheduling, see
for example [1]). The task is to schedule a set of
activities T on one resource with the following char-
acteristics:

• Each activity i ∈ T has its release time ri and
deadline di. Processing of the activity can-
not start before the release time ri and cannot
complete after the deadline di.

• Each activity i ∈ T has a family (type) fi. The
set of all families is F .

• Only activities of the same family can be pro-
cessed together. Activities processed together
form a batch—their processing starts together
and completes together.

• Processing time of an activity i ∈ T depends
only on the family of this activity fi. Let pfi

denote such processing time (or pi for short).
Processing of an activity cannot be interrupted
(non-preemptive scheduling), once it starts it
takes exactly pi time units until it completes.

• The sum of all capacities ci of the activities in
one batch cannot exceed the capacity C of the
resource (i.e. the resource is renewable).

• After a batch completes a setup is needed be-
fore another batch can start. The time of this
setup depends on the families of both conse-
quent batches. If the first batch is of family
f and the second one is of family g, then sfg

denotes minimum setup time between them.

C

j

i

l

ci

pf

pg

sfg

Figure 1: Example of two consecutive batches with
families f and g.

Setup times have to satisfy the following two con-
ditions. No setup is needed between two batches of
the same family:

∀f ∈ F : sff = 0

And the following triangle inequality holds for setup
times:

∀f, g, h ∈ F : sfg + sgh ≥ sfh

1.1 Formulation of the Problem in Constraint
Programming

The described problem can be seen as a set of vari-
ables (i.e. starting time of each activity) and a set of
constraints (i.e. all requirements for processing men-
tioned above). The task is to find an assignment to
the variables which satisfies all constraints. This is
the problem description for constraint programming
(CP).

The usual way how to solve similar scheduling
problems using CP is constraint propagation: take
each constraint and try to recognize which values
of involved variable are not possible (so-called in-
consistent values). When there is only one possible
value left for a given variable then we found the right
assignment for this variable. The process of remov-
ing inconsistent values for a given constraint is often
called filtering.

A good way to improve the constraint propaga-
tion is to use one (so-called global) constraint instead
of several simple constraints. A Filtering algorithm
for such global constraint can recognize more incon-
sistent values than the original constraints. In this
paper, I consider only one global constraint for the
whole resource and present several improvements of
the filtering algorithms for this constraint. All of
these algorithms remove inconsistent values by in-
creasing the release times ri or decreasing the dead-
lines di of the activities.

Constraint propagation is often not sufficient to
find the solution. In this case, one of the ways to
find a solution is to use a search method (e.g. back-
tracking) and constraint propagation can be used as
an efficient method form pruning the search space.
This is the case of this paper.

There are four existing filtering algorithms for
the problem of batch processing with sequence de-
pendent setup times: edge finding, not-first/not-last,
not-before/not-after (see [7]) and sequence compo-
sition (see [6]). Each of these algorithms filters out
different inconsistent values, therefore they can be
used together to get maximum pruning.

1.2 Basic Notations

All filtering algorithms in this paper deal with some
subsets of activities Ω ⊆ T , new notation is needed
for such a set Ω. I use the same notation as in [7].

Consider any subset of the activities Ω ⊆ T . Pro-
cessing of the set Ω can start at first at the time

rΩ = min{ri, i ∈ Ω}

and cannot end after the time

dΩ = max{di, i ∈ Ω}

FΩ denotes the set of all families in the set Ω:

FΩ = {f, i ∈ Ω & fi = f}

Let c(Ω, f) be the sum of the capacities of all activ-
ities in the set Ω of family f , and let u(Ω, f) be the
minimum time needed for processing these activities.
Value of u(Ω, f) is computed simply from the min-
imum number of batches; setup times, release and
due times are not taken into account.

c(Ω, f) =
∑

i∈Ω

fi=f

ci

u(Ω, f) =
⌈c(Ω, f)

C

⌉

pf

Minimum pure (i.e. without setups) processing time
of the set Ω is then:

u(Ω) =
∑

f∈FΩ

u(Ω, f)

Computation of minimum setup time needed for
the processing of the set Ω is little bit more com-
plicated. Again, release times and deadlines are not
taken into account when computing this minimum
setup s(FΩ), this minimum setup time is only esti-
mation based only on the families FΩ.

Some algorithms also need the minimum setup
time of processing of the set Ω under the condition
that the first batch is of family f . Let s(f, FΩ) be
such minimum setup time. Similarly the s(Ω, f) is
the minimum setup time needed for processing of the
set Ω if the last batch is of family f . Let k = |F |
denote the number of families, function s can be pre-
computed in the time O(k22k) for all subsets of fam-
ilies. Such computation is needed only once when
the constraint is added into the system. If the num-
ber of activities k is a small number then this time
complexity is tolerable. For the details how these
functions can be computed see [7].

Finally the minimum processing time of the set
Ω (including setup times) is:

pΩ = u(Ω) + s(FΩ)

If the processing of the set Ω starts by an activity
i ∈ Ω then the minimum processing time is:

p(i, Ω) = u(Ω) + s(fi, FΩ)

2 EDGE-FINDING

Filtering based on precedence graph has a tight rela-
tion to the edge-finding filtering algorithm, therefore
I briefly resume it here. The whole algorithm can be
found in [7].

Consider an arbitrary set Ω (T and an activity
i ∈ (T \ Ω). Assume for a while that the activity i

is scheduled before the set Ω. Then the processing
of the set Ω can start at first in the time ri + pi. The
minimum setup time needed during the processing
of the activities Ω ∪ {i} is s(fi, FΩ ∪ {fi}) because
the activity i is scheduled first. If such processing
ends after the deadline dΩ then the assumption that
the activity i can be scheduled before the set Ω, was
wrong. This is the idea of the following rule not-
before:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) : (1)

ri + pi + s(fi, FΩ ∪ {fi}) + u(Ω) > dΩ ⇒ i 6� Ω

ri + pi + s(fi, FΩ ∪ {fi}) + u(Ω) > dΩ

i j l

ri dΩ di

sfjfl

pi pj pl

fi fj fl

sfifj

Figure 2: An example of the rule not-before for the
activity i and the set Ω = {j, l}.

Similarly, next rule says that when the activity i

cannot be scheduled between the activities Ω it must
be scheduled before the whole set Ω or after it:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) : (2)

dΩ − rΩ < p(Ω ∪ {i}) ⇒ (i � Ω or Ω � i)

When both rules (1), (2) hold then the activity i

has to be scheduled after the set Ω, i.e. Ω � i. The
resulting time bond adjustment is:

Ω � i ⇒ (3)

ri ≥ max{rΩ′ +u(Ω′)+s(FΩ′ ∪ {fi}, fi), Ω′⊆Ω}

There are also symmetric rules for precedences
i � Ω. The edge-finding algorithm enforces all the
reductions resulting from these rules. However, a re-
peated run of the algorithm can find further reduc-
tions because the time bounds have changed. There-
fore it is suggested to repeat the edge-finding algo-
rithm until no more reductions are found. Time com-
plexity of one run of the algorithm [7] is O(kn2)
where n = |T | is the number of activities and k =
|F | is the number of families.

3 PRECEDENCE GRAPH

3.1 Motivation

In the following picture there is an example of a dis-
junctive scheduling problem. Disjunctive schedul-
ing is a special case of batch processing: all setup
times are 0, all capacities are 1 and the capacity of
the resource is also 1. So in the case of disjunctive

scheduling it is not possible to process more than one
activity simultaneously.

None of the mentioned filtering algorithms (i.e.
the algorithms edge-finding, not-first/not-last, not--
before/not-after and sequence composition) is able
to find any time bound adjustment for this problem:

1

2

3

p1 = 11

p2 = 10

p3 = 5

0 = r1 d1 = 25

1 = r2 d2 = 27

r3 = 14 d3 = 35

Edge-finding recognizes that the activity num-
ber 1 must be processed before the activity number
3, i.e. 1 � 3, and similarly 2 � 3. Still, each of
these precedences alone is weak—it does not enforce
any change of the time bounds. However, from the
knowledge {1, 2}�3 we can deduce r3 = r1 +p1 +
p2 = 21. Therefore a precedence-graph-based filter-
ing can be useful even if no additional precedences
are given at the start of the problem.

3.2 Detecting Precedences

The easiest way to find new precedences is the dis-
junctive constraint. It states that if an activity i can-
not be processed before nor together with an activ-
ity j then it has to be processed after the activity j.
In case of batch processing with sequence dependent
setup times the activities i and j can be processed
together iff:

fi = fj & ci + cj ≤ C

& min{di, dj} − max{ri, rj} ≥ pi (4)

And the activity i can be processed before the activ-
ity j iff:

rj + pj + sfjfi
≤ di − pi (5)

When the both conditions (4) and (5) do not hold
then the precedence i � j is called detectable.

Now I will show that all precedences found by
the edge-finding algorithm can be subsequently eas-
ily found by the disjunctive constraint:

Proposition 1 When edge-finding is unable to find
further time bound adjustments then all precedences
which the edge-finding found are detectable.

Proof: Let us suppose that the edge-finding algo-
rithm proved Ω � j. I show that for an arbitrary
activity i ∈ Ω the edge-finding algorithm made rj

big enough in order the precedence i � j to be de-
tectable.

Edge-finding proved Ω � j so the condition (2)
holds:

p(Ω ∪ {j}) > dΩ − rΩ

u(Ω ∪ {j}) + s(FΩ ∪ {fj}) > dΩ − rΩ

dΩ − u(Ω ∪ {j}) − s(FΩ ∪ {fj}) < rΩ (6)

Because edge-finding is unable to further change the
time bounds according to (3):

rj ≥max{rΩ′ +u(Ω′)+s(FΩ′ ∪ {fj}, fj), Ω′⊆Ω}

rj ≥rΩ + u(Ω) + s(FΩ ∪ {fj}, fj)

In this inequality, rΩ can be replaced by the left side
of the inequality (6):

rj > dΩ − u(Ω ∪ {j})− s(FΩ ∪ {fj})

+ u(Ω) + s(FΩ ∪ {fj}, fj)

And because:

u(Ω) − u(Ω ∪ {j}) ≥ −pi

s(FΩ ∪ {fj}, fj) − s(FΩ ∪ {fj}) ≥ 0

dΩ ≥ di

the following inequality holds:

rj > di − pj

And thus neither condition (4) nor (5) holds and
the precedence i � j is detectable.

The proof for the precedences resulting from j �
Ω is symmetrical. ut

Filtering based on a precedence graph is simple:
build up the Ω of all the activities which have to be
processed before a given activity i and then use the
rule (3):

Sort the activities according to ri

for i ∈ T do begin
Ω := ∅ ;
m := −∞ ;
for j ∈ T in non-increasing order of rj do

if j � i then begin
Ω := Ω ∪ {j} ;
m := max

(

m, rj+u(Ω)+s(FΩ∪{fi}, fi)
)

;
end;

ri :=max(m, ri) ;
end;

The algorithm has time complexity O(n2). There
is also a symmetric version of this algorithm for the
precedences i � Ω.

3.3 Transitive Closure

Several authors suggest to compute a transitive clo-
sure of the precedence graph (e.g. [2], [3]) to im-
prove the filtering based on a precedence graph. But

computing a transitive closure is time-consuming (for
instance, time complexity of the Floyd-Warshall al-
gorithm is O(n3)). After the addition of a new prece-
dence into the graph, the correction of the transitive
closure can be made in the time O(n2). Still, the
number of newly discovered precedences can be the-
oretically even O(n2).

In this section, I show that the correction of the
transitive closure has to be made only after the adding
a non-detectable precedence.

If the precedence i � j is propagated by the
edge-finding algorithm or by the precedence-graph-
based filtering then the new time bounds fulfill the
following inequalities (special cases of the rule (3)
and its symmetric version for Ω = {i} and Ω =
{j}):

rj ≥ ri + pi + sfifj

di ≤ dj − pj − sfifj

Proposition 2 Let a � b, b � c and one of these
precedences be detectable and the second one prop-
agated. Then the precedence a � c is detectable.

Proof: We distinguish two cases:

1. a � b is detectable and b � c is propagated.
Because the precedence b � c is propagated:

rc − sfbfc
≥ rb + pb

and because the precedence a � b is detectable:

rb + pb + sfbfa
> da − pa

rc − sfbfc
+ sfbfa

> da − pa

Together with the triangle inequality for the setup
times sfbfc

+ sfcfa
≥ sfbfa

:

rc + sfcfa
> da − pa

Thus neither of the conditions (4), (5) holds and the
precedence a � c is detectable.

2. a � b is propagated and b � c is detectable.
Because the precedence a � b is propagated:

db − pb ≥ da + sfafb

And because the second precedence b � c is de-
tectable:

rc + pc + sfcfb
> db − pb

rc + pc + sfcfb
> da + sfafb

We use the triangle inequality again, this time sfcfa
+

sfafb
≥ sfcfb

:

rc + pc > da − sfcfa

Once again, neither of the condition (4), (5) holds
and the precedence i � j is detectable. ut

According to the previous proposition: Let us
suppose that the edge-finding algorithm or filtering
based on a precedence graph do not yield any further
reductions. Then a lot of precedences from the tran-
sitive closure are detectable, the only missing prece-
dences (i.e. the precedences from transitive closure
which are not detectable now) are in the transitive
closure of the non-detectable precedences. Usually,
only one non-detectable precedence is added in each
search step (e.g. as a search decision) and so we can
repair the transitive closure of non-detectable prece-
dences in the time O(n2) (at each search step).

4 NOT-FIRST/NOT-LAST

The previous algorithm not-first/not-last [7] is based
on the algorithm [1] and has time complexity O(kn2).
In some situations, it uses only a weaker version of
the filtering rules. Here I present a new version of
this algorithm based on the algorithm from the arti-
cle [4]. It doesn’t use weaker rules and has better
time complexity O(n2). However, more iterations of
this algorithm may be needed before no more adjust-
ments are found.

The not-first rule is based on the following idea.
Consider an arbitrary set Ω (T and an activity i

which is not in the set Ω. Let us suppose that the
activity i is processed before the set Ω or in the first
batch of the set Ω. Then the processing of the activi-
ties Ω ∪ {i} can start at first at the time ri and has to
be completed at latest at the time dΩ. If there is not
enough time for such processing then the assumption
is wrong and the activity i can be processed at first
after one batch of the set Ω:

ri + p(i, Ω ∪ {i}) > dΩ ⇒ i 6≺ Ω (7)

ri + p(i, Ω ∪ {i}) > dΩ

j

i l

rΩ ri dΩ

sfifl

pfi
= pfj

pl

fi = fj fl

Figure 3: An example of the rule not-first for the set
Ω = {j, l} and the activity i, fj = fi.

The fact that i 6≺ Ω allows us to change the re-
lease time of the activity i:

i 6≺ Ω ⇒ ri ≥ min{rj + pj + sfjfi
, j ∈ Ω} (8)

It is clear that if there is some activity j ∈ Ω
such that rj + pj + sfjfi

≤ ri then the set Ω can-
not increase the release time ri of the activity i. The
only activities which can possibly increase the re-
lease time ri of the activity i are:

Ψ = {j, j ∈ T & j 6= i & rj + pj + sfjfi
> ri}

We are looking for some set Ω ⊆ Ψ for which the
inequality (7) holds. The algorithm constructs the
set Ψ by adding one activity after another. After each
addition two values are recomputed:

eftMin = min{rj + pj + sfjfi
, j ∈ Ψ}

lst = min{dΩ − p(i, Ω ∪ {i}), Ω ⊆ Ψ}

If lst < ri then there exists a set Ω ⊆ Ψ for which
the rule (7) holds but we do not know this set. How-
ever, we can use the rule (8) for the set Ψ—the draw-
back is that the resulting increase of the release time
ri can be lower. But if there exists any set for which
(7) holds and (8) increases the value of the release
time ri then the algorithm increases this release time.
Therefore if the algorithm is repeated until no more
reductions are found then all the time bound adjust-
ments resulting from the rules (7) and (8) are made.

Sort the activities according to di

for i ∈ T do begin
eftMin := ∞ ;
lst := ∞ ;
Ψ := ∅ ;
for j ∈ T in nondecreasing order of dj do

if i 6= j and rj + pj + sfjfi
> ri then begin

Ψ := Ψ ∪ {j} ;
eftMin := min

(

eftMin, rj + pj + sfjfi

)

;
lst := min

(

lst, dΨ − p(i, Ψ)
)

;
if lst < ri then begin

ri := eftMin;
break;

end;
end;

end;

The time complexity of this algorithm is O(n2).

5 EXPERIMENTAL RESULTS

All filtering algorithms were combined into one al-
gorithm in the following way:

repeat
repeat

repeat
repeat

consistency check
not-first/not-last

until no more changes found
precedence graph

until no more changes found
edge-finding

until no more changes found
not-before/not-after

until no more changes found

The order in which the algorithms are called is not
important for the resulting filtering. The selected or-
der is the fastest for the tested problems.

I used the benchmark set [5]. The search strategy
which I used is simple: take the activity which can be
scheduled first and schedule it in its release time. It is

the same search strategy that I used in [7]. The table
1 shows the results (column new) and comparison
with the previous results [7] (column old).

new old
problem n k solutions backtracks time backtracks time

a 30 3 88 12 1.24s 12 2.22s
b 25 5 56251 5016 16m 10s 5016 25m 30s
c 25 5 72 0 0.80s 0 1.78s
d 40 6 12 0 0.41s 1 1.02s
e 20 2 28 0 0.13s 0 0.20s
f 50 6 6 2 0.34s 2 0.70s
g 30 3 1690 77 21.96s 77 37.08s
h 75 5 12 2 1.38s 2 2.90s
i 50 5 48 44 3.44s 44 7.59s
j 50 5 10 4 0.69s 4 1.34s
k 50 7 9 0 0.72s 0 1.33s
l 50 5 4 0 0.20s 0 0.51s

m 50 3 3 3 0.16s 3 0.35s
n 30 5 39 13 0.79s 13 1.78s
o 50 5 32 8 1.62s 8 3.60s
p 30 3 270 18 3.53s 24 6.05s
q 50 7 228 0 12.44s 0 28.03s
r 50 7 324 0 22.79s 0 44.94s
s 100 7 50 0 11.31s 0 26.48s
t 200 7 8 0 7.50s 0 18.00s
v 100 7 240 0 54.26s 0 2m 6s
w 50 2 24 4 0.83s 4 1.36s
x 50 2 1368 384 39.57s 384 1m 8s
z 50 4 24 6 1.06s 7 2.14s

Table 1: Experimental results

6 CONCLUSIONS

The experimental results show that the improvements
proposed in this paper reduce the running time by
one half for the lot of problems. However, this speed-
up is not caused by better filtering (only for the prob-
lems d, p and z the number of backtracks decreased).
There are two reasons for the speed-up:

• The new version of the not-first/not-last algo-
rithm is faster. (However, the number of its
repetitions may have increased).

• The filtering based on a precedence graph is
also fast and can make a lot of filtering which
was done by edge-finding. Hence the slower
edge-finding algorithm is not repeated so of-
ten.

References

[1] Philippe Baptiste and Claude Le Pape. Edge-
finding constraint propagation algorithms for
disjunctive and cumulative scheduling. In Pro-
ceedings of the Fifteenth Workshop of the U.K.
Planning Special Interest Group, 1996.

[2] Peter Brucker. Complex scheduling problems,
1999. URL http://citeseer.nj.nec.-
com/brucker99complex.html.

[3] W. Nuijten F. Foccaci, P. Laborie. Solving
scheduling problems with setup times and al-
ternative resources. In Proceedings of the 4th
International Conference on AI Planning and
Scheduling, AIPS’00, pages 92–101, 2000.

[4] Philippe Torres and Pierre Lopez. On not-
first/not-last conditions in disjunctive schedul-
ing. European Journal of Operational Research,
1999.

[5] P. Vilı́m and R. Barták. A benchmark set
for batch processing with sequence dependent
setup times, 2002. URL http://kti.mff.-
cuni.cz/˜vilim/batch.

[6] P. Vilı́m and R. Barták. A filtering algorithm
sequence composition for batch processing with
sequence dependent setup times. Technical
Report 2002/1, Charles University, Faculty of
Mathematics and Physics, 2002.

[7] P. Vilı́m and R. Barták. Filtering algorithms
for batch processing with sequence dependent
setup times. In Proceedings of the 6th Interna-
tional Conference on AI Planning and Schedul-
ing, AIPS’02, 2002.

