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Chapter 1

Introduction

1.1 Constraint Programming

Constraint Programming (CP) is becoming a popular tool for solving large com-

binatorial problems. It provides natural modeling capabilities to describe many

real-life problems via domain variables and constraints among these variables.

There are generic techniques for constraint satisfaction usually based on integra-

tion of search (enumeration, labeling) with constraint propagation (domain fil-

tering). Moreover, the CP framework allows integration of problem-dependent

filtering algorithms into the constraint solver.

The idea of CP is to describe the problem declaratively by using constraints

over variables. Every variable has a set of possible values – the domain of the

variable. In this book all domains are finite, usually they are sets of integers.

A constraint determines which combinations of value assignments are acceptable

and which are not. A solution of such a problem is an assignment of the variables

satisfying all constraints.

Mathematically speaking:

Definition 1 A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 where

X = {x1, . . . , xn} is a finite set of variables, D = {D1, . . . ,Dn} is a set of fi-

nite domains (sets of possible values) associated with these variables and C =

{C1, . . . ,Ck} is a finite set of constraints. Each constraint is a relation on the sub-

set of domains Ci ⊆ Di1 × · · · × Dil which defines assignments of values of the

variables xi1 , . . . , xil acceptable by the constraint Ci.

Solution of the CSP is a tuple 〈v1, . . . , vn〉 of values assigned to the variables

x1, . . . , xn such that each variable xi has the value from its domain Di and all

constraints C are satisfied.

To take a simple example of a CSP, consider a problem with two variables
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x and y with domains x ∈ {1, 2, 3, 4}, y ∈ {2, 3, 4, 5} and constraints x > y and

x + y ≥ 7.

Constraint Propagation

A typical way of solving a CSP is constraint propagation combined with some

kind of search. The following paragraphs very informally describe this approach.

One of the key principles of constraint propagation is a notion of support. We

say that an assignment of a value v to a variable x has a support with respect to

a constraint C if there exists an assignment of remaining variables to values from

their domains such that the constraint C is satisfied. Naturally if a value has no

support with respect to some constraint then it can be removed from the domain

– we say that the value is inconsistent. The algorithm which determines which

values are inconsistent with respect to a constraints is called filtering algorithm

for the constraint. Usually the filtering algorithms for constraints take turns until

no one is able to prune a domain any more (we call that state a fixpoint) or one

domain becomes empty (i.e., the problem has no solution). This iterative process

is called constraint propagation.

The result of the propagation is a CSP which is equivalent with the original

(in terms of solutions) but it is somehow more consistent. Depending on the level

of propagation we distinguish several types of consistencies. For example arc

consistency (AC) 1 can be achieved by removing all unsupported values from all

domains. Although AC is very widely used it is not the strongest level of prop-

agation which can be achieved. In particular, when searching for inconsistent

values, we can take into account more than one constraint. This is for example

idea of path consistency (PC). However such stronger consistency techniques are

also more time consuming therefore they are not used very much. For more infor-

mation about this area of constraint programming see for example [15].

Let us continue with the example above to show how to achieve arc consis-

tency: the propagation of the constraint x > y will deduce that it is not possible

that x = 1 or x = 2 because the lowest possible value of y is 2. Therefore the

new domain of x will be {3, 4}. Then the constraint x + y ≥ 7 will deduce that

y ≥ 3 therefore the new domain of y will be {3, 4, 5}. Finally the constraint x > y

removes the value x = 3, therefore the only possible value for x is 4. This is the

end of the constraint propagation phase because no constraint is able to change

any domain any more – it is a fixpoint.

1Traditionally, AC is defined only for binary constraints. However the informal definition of

support given here takes into account also non-binary constraints therefore we should better speak

about generalized arc consistency (GAC) what is an extension of AC for non-binary constraints.
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Sometimes maintaining arc consistency is too expensive. The CSP problem

itself is NP-complete [17] and detection of unsupported values for complex con-

straints can be NP-complete too. In this case we often resign to AC and remove

only inconsistent values which can be found quickly. For example we can require

only bound consistency (BC) which says that only the minimum and maximum

value in each domain cannot be unsupported. However in scheduling even bound

consistency is usually too expensive.

Propagation itself is able to solve only relatively simple classes of problems.

Therefore it is usually combined with some search algorithm (for example back-

tracking). And here comes another key principle of constraint programming:

clearly divide propagation, search and heuristics into different modules. Filtering

algorithms for constraints can be also seen as “sub-modules” of the propagation.

Figure 1.1 shows how these modules cooperate during the process of finding a

solution.

Propagation

Search

Heuristics

modified instance status

decision

Figure 1.1: Modular CP framework

The purpose of constraint propagation is to narrow down the current problem

and to decide whether the problem:

• is solved,

• is infeasible,

• or may be feasible.

This information (status) is used by the search module to decide how to continue:

• When the problem is solved, report the solution to the user. If it is an opti-

mization problem then continue by searching for a better solution.
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• When the problem may be feasible then do a “step forward”, i.e., call heuris-

tics to suggest a decision and modify the current problem accordingly. Then

continue by constraint propagation on the modified problem.

• When the problem is infeasible then do a “step(s) back”, i.e., return to some

decision taken earlier and undo it. If there is no decision to step back then

report infeasibility to the user.

There are great benefits coming from this modularity. Constraint solvers such

as ILOG Solver, CHIP, SICStus Prolog, CHOCO etc. often offer predefined algo-

rithms for different modules, for example:

• A lot of predefined constraints with variants of filtering algorithms. Some-

times users can even chose which filtering algorithm they want to use for a

constraint. And if if there is some aspect of the problem for which there is

no predefined constraint matching the needs it is always possible to imple-

ment a new one.

• The framework may come with several search algorithms, for example: sim-

ple backtracking, branch and bound, limited discrepancy search (LDS) [37],

dynamic backtracking [18], or even some local search methods [19].

• And finally there may be also predefined heuristics for commonly used

problems. In case of scheduling it may be for example texture-based heuris-

tics [7] or minimum critical set based search [21].

The result is that the user is often able to solve the problem just by picking up the

right modules.

For more detailed introduction to Constraint Programming see for example

[20, 28, 2, 15].

Global Constraints

A good way how to strengthen constraint propagation is to use one constraint

(a so-called global constraint) instead of several simple constraints. By using se-

mantic information a global constraint is able to remove more inconsistencies than

elementary constraints or it can do it more efficiently. Still filtering algorithm for a

global constraints must keep reasonable (polynomial) time and space complexity.

A very good example of the benefit of global constraints is the all different

constraint. This constraint says that no value can be assigned twice in the given set

of variables. Figure 1.2 shows an example of such a problem with four variables

u, x, y and z. It is possible to describe the problem by using six binary constraints

u , x, y , x etc. However filtering algorithms of these binary constraints has
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only limited view on the problem. In particular they cannot deduce that x = 4 like

the all different constraint does (notice that the values 1, 2 and 3 will be taken by

variables u, y and z, therefore the only possible value for variable x is 4).

u ∈ {2, 3}

y ∈ {2, 3} x ∈ {1, 2, 3, 4}

z ∈ {1, 3}

, ,
,

,

, ,

Figure 1.2: Global constraint alldiff ensures that variables u, x, y and z have differ-

ent values. In this case it is an encapsulation of 6 binary “not-equal” constraints.

Many global constraints have been designed for problems of various classes.

Famous constraints are all different [25, 29] or cardinality constraint [26]. In

scheduling there is unary resource constraint [11, 23, 4, 24, 32] for modeling

simple machines, cumulative resource constraint [4, 14, 3, 24] for modeling for

example a pool of workers, and reservoir [22] for modeling a renewable sources

of power.

This book is dedicated to global constraints for scheduling, namely unary re-

source, unary resource with optional activities and batch processing with sequence

dependent setup times. The subjects of search and heuristics is almost leaved out.

1.2 Scheduling

Scheduling is one of the most successful application areas of constraint program-

ming. Behind this success there are powerful global constraints which are able to

model resource restrictions. Let us introduce scheduling and the way it is modeled

as a CSP on an example of typical academic scheduling problem – jobshop.

In jobshop there is a set of m resources which we can be used to complete

n jobs. Each job consists of a sequence of m activities2 each of them requires a

different resource. The activities in a job must be processed in the given order.

A resource can be used only by one activity in the same time and during this work

it cannot be interrupted by another activity. Exact time needed to execute each

activity is known in advance. Delays between activities can be arbitrary. The task

2When speaking of jobshop, resources are traditionally called machines and activities are called

operations. We use terms resource and activity to be consistent within the whole book.
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is to find a schedule with the minimal makespan, i.e., the minimal completion time

of all jobs.

10

9

8

7

6

5

4

3

2

1

0 100 200 300 400 500 600 700 800 842

Figure 1.3: A job in the jobshop problem.

Figures 1.3 and 1.4 illustrate a jobshop problem with n = 10 jobs and m = 10

resources. The first figure shows one of the jobs as it is scheduled in the optimal

solution. Precedences between the activities from the job are indicated by arrows.

The second figure shows the whole optimal solution (without the arrows to mark

precedences). Each job is indicated by a different color. The problem in the

figures (LA19) was taken from a common benchmark set for scheduling – OR

Library [1].

Another often used benchmark problem is openshop. It is similar to jobshop

but activities in a job can be processed in arbitrary order.

To model such scheduling problems as a CSP we usually use unary resource

constraints. A unary resource constraint takes a set of activities which must be

processed on the resource and ensures that the resource is not used by two ac-

tivities in the same time. Another constraint we will use is a binary precedence

constraint j ≪ i which expresses that the activity j must finish before the activity

i can start.

The jobshop problem LA19 in a CP pseudo-language is provided on example

1.1.
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{ Declare activities and their durations: }

j1,1 := activity ( 4 4 ) ;

j1,2 := activity ( 5 ) ;

j1,3 := activity ( 5 8 ) ;

. . .

j10,10 := activity ( 2 6 ) ;

{ Post precedence constraints: }

j1,1≪ j1,2≪ j1,3≪ j1,4≪ j1,5≪ j1,6≪ j1,7≪ j1,8≪ j1,9≪ j1,10 ;

j2,1≪ j2,2≪ j2,3≪ j2,4≪ j2,5≪ j2,6≪ j2,7≪ j2,8≪ j2,9≪ j2,10 ;

j3,1≪ j3,2≪ j3,3≪ j3,4≪ j3,5≪ j3,6≪ j3,7≪ j3,8≪ j3,9≪ j3,10 ;

j4,1≪ j4,2≪ j4,3≪ j4,4≪ j4,5≪ j4,6≪ j4,7≪ j4,8≪ j4,9≪ j4,10 ;

j5,1≪ j5,2≪ j5,3≪ j5,4≪ j5,5≪ j5,6≪ j5,7≪ j5,8≪ j5,9≪ j5,10 ;

j6,1≪ j6,2≪ j6,3≪ j6,4≪ j6,5≪ j6,6≪ j6,7≪ j6,8≪ j6,9≪ j6,10 ;

j7,1≪ j7,2≪ j7,3≪ j7,4≪ j7,5≪ j7,6≪ j7,7≪ j7,8≪ j7,9≪ j7,10 ;

j8,1≪ j8,2≪ j8,3≪ j8,4≪ j8,5≪ j8,6≪ j8,7≪ j8,8≪ j8,9≪ j8,10 ;

j9,1≪ j9,2≪ j9,3≪ j9,4≪ j9,5≪ j9,6≪ j9,7≪ j9,8≪ j9,9≪ j9,10 ;

j10,1≪ j10,2≪ j10,3≪ j10,4≪ j10,5≪ j10,6≪ j10,7≪ j10,8≪ j10,9≪ j10,10 ;

{ Post unary resource constraints: }

unary_resource ( j1,8, j2,9, j3,1, j4,9, j5,9, j6,9, j7,9, j8,4, j9,8, j10,1 ) ;

unary_resource ( j1,7, j2,4, j3,7, j4,5, j5,6, j6,3, j7,8, j8,3, j9,7, j10,7 ) ;

unary_resource ( j1,6, j2,2, j3,9, j4,3, j5,8, j6,1, j7,7, j8,8, j9,6, j10,4 ) ;

unary_resource ( j1,10, j2,10, j3,2, j4,8, j5,1, j6,6, j7,1, j8,6, j9,4, j10,3 ) ;

unary_resource ( j1,3, j2,8, j3,10, j4,4, j5,10, j6,2, j7,4, j8,2, j9,1, j10,8 ) ;

unary_resource ( j1,4, j2,1, j3,3, j4,6, j5,7, j6,5, j7,3, j8,7, j9,5, j10,2 ) ;

unary_resource ( j1,2, j2,6, j3,4, j4,7, j5,3, j6,7, j7,6, j8,5, j9,3, j10,9 ) ;

unary_resource ( j1,1, j2,7, j3,8, j4,2, j5,5, j6,4, j7,5, j8,9, j9,2, j10,6 ) ;

unary_resource ( j1,9, j2,3, j3,5, j4,1, j5,2, j6,8, j7,2, j8,10, j9,9, j10,10 ) ;

unary_resource ( j1,5, j2,5, j3,6, j4,10, j5,4, j6,10, j7,10, j8,1, j9,10, j10,5 ) ;

{ Post objective: }

minimize ( makespan ) ;

Example 1.1: Jobshop LA19 in a CP pseudo-code
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Figure 1.4: An optimal solution of the LA19 jobshop problem

1.3 Structure of this book

The major part of this book is about propagation of various resource constraints:

the basic unary resource constraint (chapter 2), unary resource constraint with

optional activities (chapter 3) and batch processing with sequence dependent setup

times (chapter 4). The book does not touch the topic of cumulative resources even

tough I believe that some of the concepts provided here would be useful for this

kind of resource too.

The chapter 2 starts by introduction of basic unary resource constraint and his-

torical background of the area. Two major parts of this chapter are Propagation

Rules – a theoretical part which investigates principles behind the unary resource

constraint from the mathematical point of view, and Filtering Algorithms – a more

practical part which uses acquired knowledge to design efficient propagation al-

gorithms.

The chapter 3 is dedicated to optional activities. It is an increasingly studied

area of scheduling and mixed planning/scheduling. The task is not only to assign

exact dates to activities but also to decide among several processing alternatives.

This leads to the concept of optional activities which may but do not have to be in

the final schedule.

Finally the chapter 4 studies scheduling on a batching resource – a resource

which can process several activities together under the condition that they are

“compatible” and their processing starts together and ends together. Furthermore
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the resource may need some setup time to switch from one kind of processing to

another one.

Unless stated otherwise all the propositions and algorithms in this book are my

own results or I played a major role in their invention. With the help of Roman

Barták and Ondřej Čepek I already published most of these results in the following

papers: [33, 31, 32, 35, 36]. Comparing with these papers this book does not

have any page limit therefore I could explain some topics more formally and in

more depths, namely a concept of fixpoint (chapter 2.3) and a transitive closure of

precedences (chapter 2.4.7). There are also new results concerning equivalence of

propagation rules for optional activities (chapter 3) which were not published yet,

namely the propositions 8 and 9.
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Chapter 2

Unary Resource Constraint

2.1 Definition

In scheduling, a unary resource is an often used generalization of a machine (or

a job in openshop), as was demonstrated at chapter 1.2. A unary resource models

a set of non-interruptible activities T which must not overlap in time – once a

resource starts process an activity it cannot stop or change the activity until pro-

cessing of the activity is finished.

Each activity i ∈ T can be restricted by the following limits:

• the earliest possible starting time esti

• the latest possible completion time lcti

• the processing time pi

A (sub)problem is to find a schedule satisfying all these requirements. This

problem is long known to be computationally difficult [17]1.

In constraint programming we associate a unary resource constraint with each

unary resource. The purpose of this constraint is to reduce the search space by

elimination of infeasible values (e.g., start times). This process is called propaga-

tion, an actual propagation algorithm is often called a filtering algorithm.

Due to the NP-hardness of the problem, it is not tractable to remove all infeasi-

ble values. Instead, it is customary to use several fast but not complete algorithms

which can find only some of the impossible assignments. These filtering algo-

rithms are repeated in every node of the search tree, therefore their speed and

filtering power are crucial.

The first simplification (in sake of speed) is the consideration of a set of possi-

ble start times of an activity i to be an interval
〈

esti, lcti − pi

〉

. Our only concern is

1Appears as problem [SS1] on page 236. It is NP-hard in the strong sense, so there is a little

hope even for a pseudo-polynomial algorithm. Therefore the use of CP is well justified here.
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to contract this interval by tightening the bounds esti and lcti, we are not interested

in holes in this intervals. Thus the role of a resource constraint can be seen as a

process of tightening of time windows 〈esti, lcti〉.

i

pi = 8esti = 0 lcti = 20

Figure 2.1: An activity i with the earliest starting time 0, the latest completion

time 20 and the processing time 8. Red arrows show the intention of the filtering

algorithms (tightening of the time interval 〈esti, lcti〉).

2.2 Existing Filtering Algorithms

During the time there were designed several filtering algorithms for the unary

resource constraint. Often these algorithms remove different types of inconsistent

values therefore they can be used together.

The following paragraphs are dedicated to the brief history of the most famous

of them. More details about each algorithm will be provided in the next chapters.

Edge Finding

Edge Finding is the oldest and the most famous filtering algorithm for the unary

resource constraint. The first version of this algorithm was proposed by Jacques

Carlier and Eric Pinson in [11]. Their algorithm has time complexity O(n log n),

but it is quite complicated to implement.

Later other two versions of this algorithm were developed by Paul Martin

with David B. Shmoys [23] and Wim Nuijten [24]. These versions have time

complexityO(n2), but are much easier to implement and therefore they are widely

used today.

This book describes a new version of this algorithm with time complexity

O(n log n), which is not so hard to implement as the algorithm in [11]. Together

with Roman Barták and Ondřej Čepek I published the algorithm in [35] and [36].

Not-First/Not-Last

The first Not-First/Not-Last algorithm was introduced by Philippe Baptiste and

Claude Le Pape in [4], its time complexity is O(n2).
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Later Philippe Torres and Pierre Lopez designed a simpler and faster version

of this algorithm [27]. Nevertheless, the worst-case time complexity remains the

same – O(n2). To achieve the same filtering as the original algorithm [4], more

iterations of the algorithm may be needed. Nevertheless this algorithm is faster

than the previous one.

In this book I describe a new version of this algorithm with worst-case time

complexity O(n log n). I already published the algorithm in [32] and [36]. Like

the algorithm [27], more iterations may be needed in order to achieve the filtering

of the original algorithm [4], but the algorithm is faster than [27].

Detectable Precedences

This is a new algorithm with worst-case time complexity O(n log n) which I intro-

duced in [32]. The algorithm was also published in [36].

Precedence Graph

Propagation based on precedence graph was mentioned by several authors, e.g., by

Brucker in [10] or by Focacci, Laborie and Nuijten in [16]. In this book I present a

simpleO(n2) algorithm which was also published in [32]. This algorithm is tightly

related to Detectable Precedences algorithm.

Overload Checking

Overload Checking was originally part of the Edge Finding [11, 23, 24]. However,

for quick computation of the fixpoint (see the next chapter), it is useful to separate

these two algorithms.

Overload Checking is not a true filtering algorithm – it does not propagate.

However by detecting so called overloaded intervals it stops the propagation when

no solution can exist.

Sweeping

Sweeping is another propagation technique for unary resource constraint. Sweep-

ing algorithm proposed by Wolf in [39] has the same propagation power as algo-

rithms Edge Finding and Not-First/Not-Last together. The worst-case time com-

plexity of this algorithm is O(n2).

This book does not include this algorithm.
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Task Intervals

Propagation using task intervals is presented in [12, 13]. Unlike the algorithms

mentioned above this technique stores some data from one run of the algorithm to

another. Using this data it is able to react to the changes since the last run more

quickly. The theoretical worst-case time complexity of this algorithm is O(n3)

however in practice it should be considerably faster than that.

The filtering power of this algorithm is not better than combination of Over-

load Checking, Edge Finding and Not-First/Not-Last. Therefore this algorithm is

also not included in this book.

2.3 Fixpoint

With the exception of the Overload Checking, all the algorithms mentioned in

the previous section are not idempotent. It means that after a successful run of

the algorithm, a subsequent run of the same algorithm can find more changes.

To achieve the maximum pruning we have to iterate the algorithm until no more

changes are found.

Moreover several filtering algorithms can be used together because each one

removes different types of inconsistencies. Thus we compute a fixpoint – a state

when no filtering algorithm is able to find any more changes. The process of

computation of the fixpoint is illustrated by the algorithm 2.1 and the figure 2.2.

Algorithm 2.1: Computation of the fixpoint

1 repeat

2 repeat

3 repeat

4 repeat

5 if not Overload_Checking then

6 fail ;

7 Detectable_Precedences ;

8 until no more propagation ;

9 Not_First / Not_Last ;

10 until no more propagation ;

11 Edge_Finding ;

12 until no more propagation ;

13 Precedence_Graph ;

14 until no more propagation ;
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Overload Checking

Detectable Precedences

Not-First/Not-Last

Edge Finding

Precedence Graph

Fixpoint

fail
inconsistent

consistent

no change

no change

no change

no change

changed

changed

changed

changed

Figure 2.2: Computation of the fixpoint

As Krzysztof Apt proved by Domain Reduction Theorem [2], if all propaga-

tion rules are monotonic then the sequence in which the filtering algorithms are

called is not important – the resulting fixpoint will be always the same. How-

ever total running time depends on the sequence significantly. According to my

experimental results the sequence presented in figure 2.2 seems to be the best.

2.3.1 Monotonicity

Definition 2 Let 〈X,D,C〉 be a CSP, D = 〈D1, . . . ,Dn〉 and let f be a filtering

function:

f : P(D1) × . . . × P(Dn)→ P(D1) × . . . × P(Dn)

Let 〈d1, . . . , dn〉 and 〈e1, . . . , en〉 be two states of domains (i.e., d1, e1 ⊆ D1, d2, e2 ⊆

D2 . . . , dn, en ⊆ Dn) and let:

f (〈d1, . . . , dn〉) =
〈

d′1, . . . , d
′
n

〉

f (〈e1, . . . , en〉) =
〈

e′1, . . . , e
′
n

〉

The filtering function f is monotonic if:

d1 ⊆ e1, . . . , dn ⊆ en ⇒ d′1 ⊆ e′1, . . . , d
′
n ⊆ e′n
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In other words: considering two instances of the same CSP problem a mono-

tonic filtering function cannot yield worse pruning for the more specific instance.

All the filtering algorithms from this book are monotonic. This property can

be easily confirmed by close inspection of each rule. We will not emphasize this

property for each rule again.

2.4 Propagation Rules

In this chapter we define rules which are the roots of propagation algorithms for

the unary resource in this book. Sometimes we will study equivalence of different

formulations of the same rule (for example for Edge Finding). In some cases we

will study how different rules relate with each other (Detectable Precedences and

Precedence Graph).

The algorithms themselves will be presented later in the chapter 2.5. We will

not specifically prove the equivalence of presented algorithms with other versions

of these algorithm. The reason is simple – since both algorithms propagate ac-

cording to the same rules and both algorithms make full propagation the result

has to be the same.

2.4.1 Basic Notation

In this section we establish basic notation about unary resource and activities. For

an activity i we already defined the earliest start time esti, the latest completion

time lcti and the processing time pi in chapter 2.1.

Now, we will extend this notation for a set of activities. Let T be the set of all

activities on the resource and let Ω ⊆ T be an arbitrary non-empty subset of T .

The earliest starting time estΩ, the latest completion time lctΩ and the processing

time pΩ of the set Ω are defined as:

estΩ = min
{

est j, j ∈ Ω
}

lctΩ = max
{

lct j, j ∈ Ω
}

pΩ =
∑

j∈Ω

p j

Often we will need a lower bound of the earliest completion time of the set Ω.

Computation of the true lower bound would be slow, because the problem is NP-

hard. Therefore we use the following lower bound instead:

ectΩ = max
{

estΩ′ + pΩ′ , Ω
′ ⊆ Ω

}

(2.1)
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Symmetrically we define estimation of the latest start time:

lstΩ = min
{

lctΩ′ − pΩ′ , Ω
′ ⊆ Ω

}

(2.2)

To extend the definitions also for Ω = ∅ let:

est∅ = −∞

lct∅ = ∞

p∅ = 0

ect∅ = −∞

lst∅ = ∞

2.4.2 Binary Precedence Constraint

Together with the unary resource constraint binary precedence constraints are used

to model shop scheduling problems. A precedence constraint i ≪ j ensures that

the activity i finishes before the activity j starts.

Propagation of the precedence constraint i ≪ j is simple: whenever esti is

increased the constraint propagates the change to est j:

i ≪ j ⇒ est j := max{est j, esti + pi} (2.3)

Similarly when lct j is decreased, lcti can be adjusted:

i ≪ j ⇒ lcti := min{lcti, lct j − p j} (2.4)

Note that the rules are symmetrical. This is typical for all filtering rules in

scheduling – there is a rule for updating esti and a symmetric rule for updating

lcti. Since propagation algorithms for symmetric rules are also symmetric we will

always consider only one symmetric rule, usually the one which updates esti.

Adjustments according to the rules (2.3) and (2.4) can be done in O(1). In

the section 2.4.7 we will see that if the activities i and j are on the same resource

then it may be better to propagate the precedence together with other precedences

using a precedence graph.

2.4.3 Overload Checking

The rule for Overload Checking is the simplest of the presented rules. This rule

checks whether it can be quickly proved that the problem has no solution. In that

case we can stop the filtering.
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The easiest way how to detect an infeasibility in CP is to find a variable with

empty domain. For an activity i it means that esti + pi > lcti. This check is used

whenever esti or lcti is changed. For simplicity we do not emphasize this in the

filtering algorithms.

However, this simple check can be further extended as follows. Let us consider

an arbitrary set Ω ⊆ T . The overload rule (see e.g. [38]) says that if the set Ω

cannot be processed within its bounds then no solution exists:

∀Ω ⊆ T :
(

estΩ + pΩ > lctΩ ⇒ fail
)

(OL)

A

B

C

t
0 5 10 15

Figure 2.3: A sample problem for Overload Checking

This is a classical formulation of the Overload Checking rule. However for

implementation of this rule, an equivalent formulation may be more convenient.

Let us define a “left cut by the activity j” as a set:

LCut(T, j) =
{

k, k ∈ T & lctk ≤ lct j

}

(2.5)

The new rule is:

∀ j ∈ T :
(

ectLCut(T, j) > lctLCut(T, j) ⇒ fail
)

(OL’)

Proposition 1 The rules (OL) and (OL’) are equivalent.

Proof: The prove has two parts. First we prove that when the rule (OL) detects

inconsistency, then the rule (OL’) will detect it too. After that we will prove the

opposite implication.

1. Let the rule (OL) detects inconsistency. Let j be such an activity from the

set Ω that lct j = lctΩ. Clearly lct j = lctLCut(T, j). Moreover Ω ⊆ LCut(T, j)
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and therefore estΩ + pΩ ≤ ectLCut(T, j). So we have:

lctLCut(T, j) = lct j = lctΩ < estΩ + pΩ ≤ ectLCut( j)

lctLCut(T, j) < ectLCut(T, j)

and the rule (OL’) also detects the inconsistency.

2. Let the rule (OL’) detects inconsistency. We define Ω to be such a subset of

LCut(T, j), that estΩ + pΩ = ectLCut(T, j) (thanks to the definition (2.1) such a

set must exists). Than:

estΩ + pΩ = ectLCut(T, j) > lctLCut(T, j) ≥ lctΩ

estΩ + pΩ > lctΩ

and so the rule (OL) also detects inconsistency.

⊓⊔

2.4.4 Edge Finding

Edge Finding is probably the most frequently used filtering algorithm for a unary

resource constraint. The algorithm is based on the following rule (see e.g., [4]).

Let us consider a set Ω ⊆ T and an activity i < Ω. If the following condition

holds, then the activity i has to be scheduled after all activities from the set Ω (see

also the figure 2.4):

∀Ω ⊂ T, ∀i ∈ (T \Ω) :
(

estΩ∪{i} + pΩ∪{i} > lctΩ ⇒ Ω ≪ i
)

Once we know that the activity i must be scheduled after the set Ω, we can

adjust esti:

Ω≪ i ⇒ esti := max {esti, ectΩ} (2.6)

The whole rule is:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :
(

estΩ∪{i} + pΩ∪{i} > lctΩ ⇒ Ω≪ i ⇒ esti := max {esti, ectΩ}
)

(EF)

There is also a symmetric rule, which adjust lcti:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :
(

lctΩ∪{i} − pΩ∪{i} < estΩ ⇒ i≪ Ω ⇒ lcti := min {lcti, lstΩ}
)
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C

D

E

F

t5 10 15 20 25 30

Figure 2.4: A sample problem for Edge Finding: estC can be changed to 18.

Since the rules are symmetric, in the following we will consider only the first

rule (EF).

The traditional rule can be rewritten into an equivalent form, which is more

suitable for the algorithm presented later in chapter 2.5.7:

∀ j ∈ T, ∀i ∈ T \ LCut(T, j) :

ectLCut(T, j)∪{i} > lct j ⇒ LCut(T, j) ≪ i ⇒ esti := max
{

esti, ectLCut(T, j)

}

(EF’)

Proposition 2 When the resource is not overloaded according to the rule (OL),

then the rules (EF) and (EF’) are equivalent.

Note that if the resource is overloaded then it is needless to compare the rules

(EF) and (EF’) because the propagation will end by fail anyway.

Proof: We will prove the equivalence by proving both implications.

1. First, let us prove that the new rule (EF’) generates all the changes which

the original rule (EF) does.

Let us consider a set Ω ⊆ T and an activity i ∈ T \ Ω. Let j be one of the

activities from Ω for which lct j = lctΩ. Thanks to this definition of j we

have Ω ⊆ LCut(T, j) and so (recall the definition of ect):

ectΩ ≤ ectLCut(T, j)

And also:

estΩ∪{i} + pΩ∪{i} = min {estΩ, esti} + pΩ + pi ≤ ectLCut(T, j)∪{i}

Thus: when the original rule (EF) holds for Ω and i, then the new rule (EF’)

holds for LCut(T, j) and i too, and the change of esti is at least the same as

the change by the rule (EF). Hence the first implication is proved.
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2. Now we will prove the second implication: filtering according to the new

rule (EF’) will not generate any changes which the old rule (EF) cannot

prove too.

Let us consider a pair of activities i, j for which the new rule (EF’) holds.

We define a set Ω′ as a subset of LCut(T, j) ∪ {i} for which:

ectLCut(T, j)∪{i} = estΩ′ + pΩ′ (2.7)

Note that thanks to the definition (2.1) of ect such a set Ω′ must exist.

If i < Ω′ then Ω′ ⊆ LCut(T, j), therefore

estΩ′ + pΩ′
(2.7)
= ectLCut(T, j)∪{i}

(EF′)
> lct j ≥ lctΩ′

So according to the rule (OL) the resource is overloaded. As was noted

above, in this case we do not care whether the rules are equivalent or not

because the propagation will end by fail anyway.

Thus i ∈ Ω′. Let us define Ω = Ω′ \ {i}. We will assume that Ω , ∅, because

otherwise esti ≥ ectLCut(T, j) and the rule (EF’) achieves nothing. For this set

Ω we have:

min {estΩ, esti} + pΩ + pi = estΩ′ + pΩ′
(2.7)
= ectLCut(T, j)∪{i}

(EF′)
> lct j ≥ lctΩ

Hence the rule (EF) holds for the set Ω.

To complete the proof we have to show that both rules (EF) and (EF’) ad-

just esti equivalently, i.e., ectΩ = ectLCut(T, j). We already know that ectΩ ≤

ectLCut(T, j) because Ω ⊆ LCut(T, j). Suppose now for a contradiction that:

ectΩ < ectLCut(T, j) (2.8)

Let Φ be a set Φ ⊆ LCut(T, j) such that:

ectLCut(T, j) = estΦ + pΦ (2.9)

Therefore:

estΩ + pΩ ≤ ectΩ
(2.8)
< ectLCut(T, j)

(2.9)
= estΦ + pΦ (2.10)

Because the set Ω′ = Ω ∪ {i} defines the value of ectLCut(T, j)∪{i} (because

estΩ′ + pΩ′ = ectLCut(T, j)∪{i}), it has the following property (see the definition

of ect):

∀k ∈ LCut(T, j) ∪ {i} : estk ≥ estΩ′ ⇒ k ∈ Ω′



28 Chapter 2. Unary Resource Constraint

And because Ω = Ω′ \ {i}:

∀k ∈ LCut(T, j) : estk ≥ estΩ′ ⇒ k ∈ Ω (2.11)

Similarly, the set Φ defines the value of ectLCut(T, j):

∀k ∈ LCut(T, j) : estk ≥ estΦ ⇒ k ∈ Φ (2.12)

Combining properties (2.11) and (2.12) together we have that either Ω ⊆ Φ

(if estΩ′ ≥ estΦ) or Φ ⊆ Ω (if estΩ′ ≤ estΦ). However, Φ ⊆ Ω is not possi-

ble, because in this case estΦ + pΦ ≤ ectΩ which contradicts the inequality

(2.10). The result is that Ω ( Φ, and so pΩ < pΦ.

Now we are ready to prove the contradiction:

ectLCut(T, j)∪{i}

(2.7)
=

= estΩ′ + pΩ′

= min {estΩ, esti} + pΩ + pi because Ω = Ω′ \ {i}

= min
{

estΩ + pΩ + pi, esti + pΩ + pi

}

< min
{

estΦ + pΦ + pi, esti + pΦ + pi

}

by (2.10) and pΩ < pΦ

≤ ectLCut(T, j)∪{i} because Φ ⊆ LCut(T, j)

⊓⊔

The rule (EF’) has a very useful property, which we will use in the algorithm:

Property 1 To achieve maximum propagation by the rule (EF’) for a given activ-

ity i ∈ T, it is sufficient to look for an activity j ∈ (T \ {i}) such that (EF’) holds

and lct j is maximum.

Proof: Let us consider an activity i and two different activities j1 and j2 for

which the detection part of the rule (EF’) holds. Moreover let lct j1 ≤ lct j2 . Then

LCut(T, j1) ⊆ LCut(T, j2) and so ectLCut(T, j1) ≤ ectLCut(T, j2). Therefore j2 yields

better propagation than j1. ⊓⊔

2.4.5 Not-First/Not-Last

Not-First and Not-Last are two symmetric propagation algorithms for the unary

resource. From these two, we will consider only the Not-Last algorithm.

The algorithm is based on the following rule. Let us consider a set Ω ( T and

an activity i ∈ (T \Ω). The activity i cannot be scheduled after the set Ω (i.e., i is

not last within Ω ∪ {i}) if:

estΩ + pΩ > lcti − pi (2.13)
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In that case, at least one activity from the setΩmust be scheduled after the activity

i. Therefore the value lcti can be updated:

lcti := min
{

lcti, max
{

lct j − p j, j ∈ Ω
}}

(2.14)

The full Not-Last rule is:

∀Ω ( T, ∀i ∈ (T \ Ω) :

estΩ + pΩ > lcti − pi ⇒ lcti := min
{

lcti, max
{

lct j − p j, j ∈ Ω
}}

(NL)

For a demonstration, see figure 2.5.

A

B

C

t0 5 10 15 20 25

Figure 2.5: A sample problem for Not-Last: lctC can be changed to 17.

The only algorithm which is based directly on this rule is by Baptiste and Le

Pape [4]. The main difficulty of this algorithm is to find the set Ω which achieves

the maximum filtering of lcti for a given activity i.

Torres and Lopez [27] modified this rule in the following way. In order to

achieve the fixpoint the algorithm must be iterated (see chapter 2.3). Therefore it

is not necessary to achieve the best filtering in the first iteration, the filtering can

be further improved in the next runs of the algorithm.

Let the activity i be fixed. If there is a setΩ for which the rule (NL) propagates

it must be a subset of:

NLSet(T, i) =
{

j, j ∈ T & lct j − p j < lcti & j , i
}

(2.15)

Because otherwise max
{

lct j − p j, j ∈ Ω
}

≥ lcti. The question is whether there is

such a set Ω ⊆ NLSet(T, i) for which also the detection part of the rule (NL) is

valid, i.e., estΩ + pΩ > lcti − pi. It exists if and only if:

max
{

estΩ + pΩ, Ω ⊆ NLSet(T, i)
}

= ectNLSet(T,i) > lcti − pi

It is not necessary to search for the actual set Ω. By the definition of the set

NLSet(T, i):

max
{

lct j − p j, j ∈ Ω
}

≤ max
{

lct j − p j, j ∈ NLSet(T, i)
}

< lcti
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Thus the value lcti can be updated to max
{

lct j − p j, j ∈ NLSet(T, i)
}

. And if it

can be updated better it will be done in the next runs of the algorithm.

The whole modified not-last rule is:

∀i ∈ T : ectNLSet(T,i) > lcti − pi ⇒

lcti := max
{

lct j − p j, j ∈ NLSet(T, i)
}

(NL’)

Proposition 3 Considering an activity i, at most n − 1 iterative applications of

the rule (NL’) achieve the same filtering as one application of the rule (NL).

Proof: Let Ω be the set which induces the maximum change of the value lcti by

the rule (NL). Until the same value of lcti is reached, in each iteration of the rule

(NL’) holds that Ω ⊆ NLSet(T, i). The reason follows. Because the rule (NL)

propagates for the set Ω it must be that max{lct j − p j, j ∈ Ω} < lcti. Thus:

∀ j ∈ Ω : lct j − p j < lcti

And because i < Ω we get that Ω ⊆ NLSet(T, i). Thus:

ectNLSet(T,i) ≥ estΩ + pΩ > lcti − pi

and the rule (NL’) holds and propagates.

After each successful application of the rule (NL’) the value lcti is decreased.

This removes at least one activity from the set NLSet(T, i). Therefore the final

value of lcti must be reached after at most n − 1 iterations and it is the same as for

the rule (NL). ⊓⊔

Note that the rule (NL’) does not have to be iterated for each activity i sepa-

rately and the iterations can be even mixed with other algorithms. Because both

the rules (NL) and (NL’) are monotonic, the resulting fixpoint will be the same.

However number of iterations can differ, the maximum number of n− 1 iterations

is not guaranteed in this case.

2.4.6 Detectable Precedences

The idea of detectable precedences was introduced in [31] for a batch resource

with sequence dependent setup times and then simplified for the unary resource

in [32]. The figure 2.6 provides an example when neither Edge Finding nor Not-

First/Not-Last algorithm is able change any bound.

Not-First algorithm recognizes that the activity A must be processed before the

activity C, i.e. A ≪ C, and similarly B≪ C. Still, each of these precedences alone

is weak: they do not enforce change of any bound. However, from the knowledge

{A, B} ≪ C we can deduce that estC ≥ estA + pA + pB = 10. This is exactly what

the Detectable Precedences algorithm does.
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A

B

C

t
0 5 10 15

Figure 2.6: A sample problem for Detectable Precedences. estC can be changed

to 10.

Definition 3 Let i and j be two different activities from the same resource. A

precedence j≪ i is called detectable, if it can be “discovered” only by comparing

bounds of the two activities:

esti + pi > lct j − p j ⇒ j≪ i (2.16)

Notice that in figure 2.6 both precedences A ≪ C and B≪ C are detectable.

The propagation rule follows. Let us define a set of all “detectable predeces-

sors” of the activity i as a set:

DPrec(T, i) =
{

j, j ∈ T & esti + pi > lct j − p j & j , i
}

(2.17)

Because DPrec(T, i) ≪ i, we can adjust the earliest starting time of the activity i

(notice similarity with the Edge Finding rule (2.6)):

∀i ∈ T : esti := max
{

esti, ectDPrec(T,i)

}

(DP)

There is also a symmetric rule for precedences j ≫ i, but we will not consider it

here, nor the resulting symmetric algorithm.

2.4.7 Precedence Graph

Filtering power of the previous rule can be further increased if we consider all

types of precedences and not only the detectable ones. In particular:

1. Precedences coming from the original problem itself.

2. Precedences added later during the search as search decisions.

3. Detectable precedences.
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4. Precedences discovered by Edge Finding, see rule (EF).

5. New precedences can be also detected by combining some precedences we

already know. For example if a ≪ b is a search decision and b ≪ c is a

detectable precedence then a ≪ c is also a valid precedence. This is what

we call a transitive closure of precedences (will be defined later).

Taking all these precedences into account, we can define a set of all predeces-

sors of an activity i on a resource as:

Prec(i) = { j, j ∈ T & j≪ i} (2.18)

where the precedence j ≪ i can be of arbitrary type.

The propagation rule is (notice the similarity with the rules (2.6) and (DP)):

∀i ∈ T : esti := max
{

esti, ectPrec(i)

}

(PG)

There is also a symmetric version for adjustment of lcti.

The main difficulty is to find all these precedences. Once we know them,

propagation according to this rule is quite easy, the algorithm is presented in the

chapter 2.5.1.

In the rest of this chapter we will present several propositions which help us

to build the set Prec(i) more easily.

Detectable precedences

A useful property of detectable precedences is that once a precedence is detectable

it stays detectable:

Proposition 4 Let j ≪ i be a detectable precedence. Then it stays detectable in

the whole search subtree.

Proof: Let esti and lct j be bounds of activities i and j in the time when j ≪ i

is detectable. And let est′
i

and lct′j be values of the same bounds a little bit later

somewhere in the search subtree2.

The precedence j≪ i was detectable therefore:

esti + pi > lct j − p j

In the subtree value esti can only increase and the value lct j can only decrease:

est′i ≥ esti

lct′i ≤ lcti

2Values pi and p j cannot change, we assume they are constant.
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Thus:

est′i + pi > lct′j − p j

Therefore the precedence j ≪ i is still detectable. ⊓⊔

Precedences from Edge Finding

Proposition 5 When Edge Finding is unable to find any further bound adjustment

then all precedences which Edge Finding found are detectable.

Proof: Let us suppose that Edge Finding proved Ω ≪ i. We will show that

for an arbitrary activity j ∈ Ω Edge Finding made esti big enough to make the

precedence j≪ i detectable.

Edge Finding proved Ω≪ i therefore the triggering condition in the rule (EF)

was valid before the filtering:

min (estΩ, esti) + pΩ + pi > lctΩ

Since that, the bounds of all activities could have changed: est could have been

increased and lct could have been decreased. However these changes cannot in-

validate this condition, therefore it has to be still valid. And so:

estΩ > lctΩ − pΩ − pi (2.19)

Edge Finding is unable to further change any bound. According to the rule (EF)

it means that:

esti ≥ max{estΩ′ + pΩ′ , Ω
′ ⊆ Ω}

esti ≥ estΩ + pΩ

In this inequality, estΩ can be replaced by the right side of the inequality (2.19):

esti > lctΩ − pΩ − pi + pΩ

esti > lctΩ − pi

lctΩ ≥ lct j because j ∈ Ω. Using this we get:

esti > lct j − pi

esti + pi > lct j − p j

So the condition (2.16) holds and the precedence j≪ i is detectable.

The proof for the precedences resulting from i ≪ Ω is symmetrical. ⊓⊔

So when we are looking for all precedences on a resource, we do not have to

remember all precedences found by Edge Finding because they become detectable

anyway. The item 4 from the page 32 is only a subset of the item 3.
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Propagated precedences

Before we continue, let us define a propagated precedence. Once we know about

some precedence, we propagate it. Depending on the type of the precedence we

use different algorithms: binary precedence constraint, Detectable Precedences,

Edge Finding or Precedence Graph. In all these cases the adjustment is done

according to the same idea:

Ω ≪ i ⇒ esti := max {esti, ectΩ}

For assurance see the rules (DP), (EF), (PG). The rule for binary constraint (2.3)

is a special case of the rule above for Ω = { j}. This allows to define a propagated

precedence as follows.

Definition 4 Let i and j be two different activities on the same resource and let

j ≪ i. The precedence j ≪ i is called propagated iff the activities i and j fulfill

the following two inequalities:

esti ≥ est j + p j

lct j ≤ lcti − pi

In the following we will assume that we do not miss a propagation of any

known precedence and therefore all known precedences eventually become prop-

agated.

Transitive closure of precedences

First let us define a transitive closure:

Definition 5 Precedences on a resource forms transitive closure iff:

∀i, j, k ∈ T : i≪ j & j≪ k ⇒ i≪ k

The idea is that we can achieve better filtering by taking into account the prece-

dences resulting from the transitivity rule above, see for example [10] or [16]. In

this section we will show how to compute the transitive closure more effectively.

Let us summarize the results of the previous paragraphs. We defined two types

of precedences on a unary resource:

A. Detectable precedences. These are the most easy precedences to find. They

originate from:

(a) the Detectable Precedences algorithm,
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(b) the Edge Finding algorithm.

B. Non-detectable but propagated precedences. They originate from:

(a) the original problem itself,

(b) search decisions.

The question is: will be a precedence resulting from the transitivity rule de-

tectable or not? As we will see in the following, in the most cases it will be

detectable (and thus already known). This is the key to make computation of

transitive closure more effective.

Lemma 1 Let a ≪ b, b ≪ c and one of these precedences is detectable and the

other one is propagated. Then the precedence a≪ c is detectable.

Proof: We distinguish two cases:

1. a≪ b is detectable and b ≪ c is propagated.

Because the precedence b ≪ c is propagated:

estc ≥ estb + pb

and because the precedence a ≪ b is detectable:

estb + pb > lcta − pa

estc > lcta − pa

Thus the precedence a≪ c is detectable.

2. a≪ b is propagated and b ≪ c is detectable.

Because the precedence a ≪ b is propagated:

lctb − pb ≥ lcta

And because the second precedence b≪ c is detectable:

estc + pc > lctb − pb

estc + pc > lcta

Once again, the precedence a≪ c is detectable.

⊓⊔

Now we are able to prove the following proposition:
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Proposition 6 Let i1, i2, . . . , in ∈ T and let i1 ≪ i2 ≪ · · · ≪ in be propagated

precedences and at least one of them is detectable. Then the precedence i1 ≪ in

is detectable.

Proof: We can prove that the precedence i1 ≪ in is detectable by repeated appli-

cation of the previous proposition. For a demonstration, see figure 2.7.

i1

i2

i3 i4

i5

i6

1

2

3

4

Annotation:

detectable precedence

non-detectable precedence

i
detectable precedence proved

in the i-th step of the proof

Figure 2.7: Computation of transitive closure.

On this picture there is a sequence of propagated precedences i1 ≪ i2 ≪ i3 ≪

i4 ≪ i5 ≪ i6 and only one of them (i3 ≪ i4) is detectable. First we prove that

i3 ≪ i5 is detectable using lemma 1 (because i3 ≪ i4 is detectable and i4 ≪ i5

is propagated). Next we prove that i3 ≪ i6 is also detectable (because i3 ≪ i5 is

detectable and i5 ≪ i6 is propagated). And so on we can prove that i2 ≪ i6 and

finally i1 ≪ i6. ⊓⊔

As mentioned earlier, all precedences eventually become propagated. Thus

(using the last proposition) the transitive closure can be computed as a union of:

1. Detectable precedences.

2. transitive closure of non-detectable precedences.

Set of non-detectable precedences is mostly static – usually non-detectable

precedences are introduced during a search only as search decisions. This strongly

limits number of times when transitive closure must be recalculated.

2.5 Filtering Algorithms

In this chapter we describe filtering algorithms for the propagation rules presented

earlier. Most of the algorithms are based on the data structure calledΘ-tree, which

is described in a special chapter.

To make the description of the algorithms more comprehensible the algorithms

are presented in a different order than the propagation rules.
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2.5.1 Precedence Graph

Propagation according to the precedence graph is the only presented algorithm

for the unary resource constraint which does not use the Θ-tree, therefore it is

presented first.

The algorithm 2.2 requires a transitive closure of non-detectable precedences

and its reparation whenever new non-detectable precedence (search decision) is

added into the system (as was described in the section 2.4.7).

The idea of the algorithm follows. For each activity i we compute value

ectPrec(i) in the variable m. The test j ≪ i on the line 4 considers all types of

precedences – detectable as well as non-detectable (including precedences from

the transitive closure). Worst-case time complexity of the algorithm is O(n2).

Algorithm 2.2: Precedence Graph Based Filtering

1 for i ∈ T do begin

2 m := −∞ ;

3 for j ∈ T in non-decreasing order of est j do

4 if j ≪ i then

5 m := max
{

m, est j

}

+ p j ;

6 esti := max {m, esti} ;

7 end ;

A symmetric algorithm adjusts lcti.

2.5.2 Θ-Tree

One of the main complexities of the filtering algorithms for a unary resource is to

quickly compute the earliest completion time ectΘ of some set Θ. The following

data structure can help us to quickly recompute the value ectΘ whenever the set Θ

is changed. The name Θ-tree comes from the fact that the represented set will be

always named Θ.

The idea of Θ-tree was first introduced in [32] and then slightly modified in

[36]. In the following, we will use this modified version of Θ-tree.

A Θ-tree is a balanced binary tree. Activities from the set Θ are represented

by leaf nodes3. In the following we do not make a difference between an activity

and the leaf node representing that activity. Internal nodes of the tree are used to

hold some precomputed values. For an example of the Θ-tree see figure 2.8.

3This is the main difference from [32]. The tree is deeper by one level, however a simpler

computation of ect and ΣP compensates that.
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ΣP = 25

ect = 45

ΣP = 11

ect = 31

ΣP = 14

ect = 44

esta = 0

pa = 5

ΣPa = 5

ecta = 5

estb = 25

pb = 6

ΣPb = 6

ectb = 31

estc = 30

pc = 4

ΣPc = 4

ectc = 34

estd = 32

pd = 10

ΣPd = 10

ectd = 42

Figure 2.8: An example of a Θ-tree for Θ = {a, b, c, d}.

Let v be an arbitrary node of the Θ-tree (an internal node or a leaf). We define

Leaves(v) to be the set of all activities represented in the leaves of the subtree

rooted at the node v. Further let:

ΣPv =
∑

j∈Leaves(v)

p j

ectv = ectLeaves(v) = max
{

estΘ′ + pΘ′ , Θ
′ ⊆ Leaves(v)

}

Clearly, for an activity i ∈ Θ we have ΣPi = pi and ecti = esti + pi. And for the

root node r we have ectr = ectΘ.

For an internal node v the value ΣPv can be easily computed from the direct

descendants left(v) and right(v):

ΣPv = ΣPleft(v) +ΣPright(v) (2.20)

In order to compute also ectv recursively, the activities cannot be stored in

the leaves randomly, but in the non-decreasing order by est from left to right. In

particular for any two activities i, j ∈ Θ, if esti < est j then the activity i is stored

on the left from the activity j. Thanks to this property the following inequality

holds:

∀i ∈ Left(v),∀ j ∈ Right(v) : esti ≤ est j (2.21)
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where Left(v) is a shortcut for Leaves(left(v)), similarly Right(v).

Proposition 7 For an internal node v, the value ectv can be computed by the

following recursive formula:

ectv = max
{

ectright(v), ectleft(v) +ΣPright(v)

}

(2.22)

Proof: From the definition (2.1), the value ectv is:

ectv = ectLeaves(v) = max
{

estΘ′ + pΘ′ , Θ
′ ⊆ Leaves(v)

}

With respect to the node v we will split the sets Θ′ into the following two cate-

gories:

1. Left(v) ∩ Θ′ = ∅, i.e., Θ′ ⊆ Right(v). Clearly:

max
{

estΘ′ + pΘ′ , Θ
′ ⊆ Right(v)

}

= ectRight(v) = ectright(v)

2. Left(v) ∩ Θ′ , ∅. Then estΘ′ = estΘ′∩Left(v) because of the property (2.21).

Let S be the set of all possible Θ′ considered in this part of the proof:

S = {Θ′, Θ′ ⊆ Θ & Θ′ ∩ Left(v) , ∅}

Then:

max
{

estΘ′ + pΘ′ , Θ
′ ∈ S

}

=

= max
{

estΘ′∩Left(v) + pΘ′∩Left(v) + pΘ′∩Right(v), Θ
′ ∈ S

}

=

= max
{

estΘ′∩Left(v) + pΘ′∩Left(v), Θ
′ ∈ S

}

+ pRight(v) =

= ectleft(v) +ΣPright(v)

We used the fact that the maximum is achieved only by such a set Θ′ for

which Right(v) ( Θ′.

Therefore the formula (2.22) is correct. ⊓⊔

Thanks to the recursive formulas (2.20) and (2.22), the values ectv and ΣPv can

be easily computed within usual operations with a balanced binary tree without

changing their time complexities. Time complexities of operations with Θ-tree

are summarized in the table 2.1.

Notice that Θ-tree can be implemented as any type of a balanced binary tree.

The only requirement is the time complexity O(log n) for inserting or deleting a

leaf, and the time complexity O(1) for finding the root node.

According to the author’s experience, the fastest way to implementΘ-tree is to

make the shape of the tree fixed during the whole computation. I.e., we start with

a perfectly balanced tree that represents all activities on the resource. To indicate

that an activity i is not in the set Θ it is enough to set ΣPi = 0 and ecti = −∞.

Clearly, these additional “empty” leaves will not interfere with the formulas (2.20)

and (2.22).
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Operation Time Complexity

Θ := ∅ O(1) or O(n log n)

Θ := Θ ∪ {i} O(log n)

Θ := Θ \ {i} O(log n)

ectΘ O(1)

Table 2.1: Worst-case time complexities of operations on Θ-tree.

2.5.3 Overload Checking

The algorithm is based on the following observation:

Observation 1 Let T = { j1, j2, . . . , jn} and lct j1 ≤ · · · ≤ lct jn . Then LCut(T, j1) ⊆

LCut(T, j2) ⊆ · · · ⊆ LCut(T, jn).

The idea is to get activities in non-decreasing order of lct j and to compute

Θ = LCut(T, j). Thanks to the ordering of the activities the set LCut(T, j) can be

quickly recomputed from the previous set.

Algorithm 2.3: Overload Checking

1 Θ := ∅ ;

2 for j ∈ T in non-decreasing order of lct j do begin

3 Θ := Θ ∪ { j} ;

4 if ectΘ > lct j then

5 fail ; {No solution exists }

6 end ;

Notice that if there are two activities jk and jk+1 such that lct jk = lct jk+1
then

the set Θ is not really LCut(T, jk) until the second activity jk+1 is also included

into the set Θ. Nevertheless, this does not influence soundness of the algorithm.

The worst-case time complexity of this algorithm is O(n log n) – the activities

have to be sorted and n-times an activity is inserted into the set Θ.

2.5.4 Detectable Precedences

Let us recall the definition of the detectable predecessors of the activity i (2.17):

DPrec(T, i) =
{

j, j ∈ T & esti + pi > lct j − p j & j , i
}

Unfortunately the sets DPrec(T, i) are not nested in each other in a similar way as

the sets LCut(T, i). The problem is the condition i , j. Thus let us define the set
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DPrec′(T, i) as:

DPrec′(T, i) =
{

j, j ∈ T & esti + pi > lct j − p j

}

Clearly DPrec(T, i) = DPrec′(T, i) \ {i}. The sets DPrec′(T, i) are nested in the

following way:

Observation 2 Let T = {i1, i2, . . . , in} and est1 + p1 ≤ est2 + p2 ≤ · · · ≤ estn + pn.

Then DPrec′(T, i1) ⊆ DPrec′(T, i2) ⊆ · · · ⊆ DPrec′(T, in).

The algorithm 2.4 is based on incremental computation of the sets DPrec′(T, i).

Initial sorts take O(n log n). Lines 5 and 6 are repeated n times maximum over

all iterations of the for cycle, because each time an activity is removed from the

queue. Line 8 can be done in O(log n). Therefore the worst-case time complexity

of the algorithm is O(n log n).

Algorithm 2.4: Detectable Precedences

1 Θ := ∅ ;

2 Q := queue of all activities j ∈ T in non-decreasing order of lct j − p j ;

3 for i ∈ T in non-decreasing order of esti + pi do begin

4 while esti + pi > lctQ.first − pQ.first do begin

5 Θ := Θ ∪ {Q.first} ;

6 Q . dequeue ;

7 end ;

8 est′
i

:= max
{

esti, ectΘ\{i}
}

;

9 end ;

10 for i ∈ T do

11 esti := est′
i
;

Note about idempotency

We did not even try to make the algorithm idempotent since it is necessary to

repeat all propagation algorithms until a fixpoint is reached (see chapter 2.3). And

we do the same in all following algorithms.

However it is possible to improve the algorithm in two ways:

a) The current algorithm does not change esti immediately, it stores the new

bound in est′
i

and apply the change at the end. But it would be possible to

change esti immediately and rebalance Θ-tree (if i ∈ Θ). This would not lead

to an idempotent algorithm, but it can save some iterations for reaching a fix-

point.
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b) Make the algorithm idempotent. Note that Detectable Precedences algorithm

has two parts - the one which updates esti (presented above) and the symmet-

rical one which updates lcti. Even if we make both parts idempotent, together

they will not be idempotent. Therefore it is necessary to search for fixpoint

even with such algorithm.

I would like to consider these improvements in my future work.

2.5.5 Not-First/Not-Last

Let us recall the definition of the set NLSet(T, i):

NLSet(T, i) =
{

j, j ∈ T & lct j − p j < lcti & j , i
}

Again the sets NLSet(T, i) are not nested in each other because of the condition

j , i. Let us define:

NLSet′(T, i) =
{

j, j ∈ T & lct j − p j < lcti

}

Hence NLSet(T, i) = NLSet′(T, i) \ {i}. The sets NLSet′(T, i) are now nested in

the following way:

Observation 3 Let T = {i1, i2, . . . , in} and lct1 ≤ lct2 ≤ · · · ≤ lctn. Then:

NLSet′(T, i1) ⊆ NLSet′(T, i2) ⊆ · · · ⊆ NLSet′(T, in)

The idea is to compute the sets NLSet′(T, i) incrementally:

Lines 9–11 are repeated n times maximum because each time an activity is

removed from the queue. The check on the line 13 can be done inO(log n). There-

fore the worst-case time complexity of the whole algorithm is O(n log n).

Without changing the time complexity the algorithm can be slightly improved:

the not-last rule can be also checked for the activity Q.first just before the insertion

of the activity Q.first into the set Θ (i.e., after the line 6):

7 if ectΘ > lctQ.first − pQ.first then

8 lct′Q.first := lct j − p j ;

This modification may in some cases save few iterations of the algorithm.
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Algorithm 2.5: Not-Last

1 for i ∈ T do

2 lct′i := lcti ;

3 Θ := ∅ ;

4 Q := queue of all activities j ∈ T in non-decreasing order of lct j − p j ;

5 for i ∈ T in non-decreasing order of lcti do begin

6 while lcti > lctQ.first − pQ.first do begin

9 j := Q . first ;

10 Θ := Θ ∪ { j} ;

11 Q . dequeue ;

12 end ;

13 if ectΘ\{i} > lcti − pi then

14 lct′i := min
{

lct j − p j, lct′i

}

;

15 end ;

16 for i ∈ T do

17 lcti := lct′i ;

2.5.6 Θ-Λ-tree

Before we continue with the Edge Finding algorithm, let us introduce an extension

of the Θ-tree data structure called a Θ-Λ-tree. The extension is motivated by the

alternative Edge Finding rule (EF’):

∀ j ∈ T, ∀i ∈ T \ LCut(T, j) : ectLCut(T, j)∪{i} > lct j ⇒ LCut(T, j) ≪ i

Suppose that we have chosen one particular activity j, constructed the set Θ =

LCut(T, j) and now we want the check this rule for each applicable activity i.

Unfortunately this would be too slow using the standard Θ-tree. For each

activity i we would have to:

1. add the activity i into the set Θ,

2. check whether ectΘ > lct j,

3. remove the activity i from the set Θ.

This is O(log n) for each activity i.

The idea how to surpass this problem is to extend the Θ-tree structure in the

following way: all applicable activities i will be also included in the tree, but as

gray nodes. A gray node represents an activity i which is not really in the set

Θ. However, we are curious what would happen with ectΘ if we are allowed to

include one of the gray activities into the set Θ. More precisely: let Λ ⊆ T be a
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set of all gray activities, Λ ∩ Θ = ∅. The purpose of the Θ-Λ-tree is to compute

the following value:

ect(Θ,Λ) = max
(

{ectΘ} ∪
{

ectΘ∪{i}, i ∈ Λ
})

(2.23)

The meaning of the values ect and ΣP in the new tree remains the same, how-

ever only regular (white) nodes are taken into account. Moreover the following

two values are added into each node of the tree:

ΣPv = max
{

pΘ′ , Θ
′ ⊆ Leaves(v) & |Θ′ ∩ Λ| ≤ 1

}

= max
{

{0} ∪ {pi, i ∈ Leaves(v) ∩ Λ}
}

+
∑

i∈Leaves(v)∩Θ

pi

ectv = ectLeaves(v) = max
{

estΘ′ + pΘ′ , Θ
′ ⊆ Leaves(v) & |Θ′ ∩ Λ| ≤ 1

}

ΣP is the maximum processing time of activities in a subtree if one gray activity

can be used. Similarly ect is the earliest completion time of a subtree with at most

one gray activity included. For example of the Θ-Λ-tree see figure 2.9.

The idea how to compute values ΣPv and ectv for internal node v follows. A

gray activity can be used only once: in the left subtree of v or in the right subtree of

v. Note that the gray activity used for ΣPv can be different from the gray activity

used for ectv. The formulas (2.20) and (2.22) can be modified to handle gray

nodes:

ΣPv =max
{

ΣPleft(v) +ΣPright(v), ΣPleft(v) +ΣPright(v)

}

ectv =max
{

ectright(v), (a)

ectleft(v) +ΣPright(v), ectleft(v) +ΣPright(v)

}

(b)

The line (a) considers all setsΘ′ such thatΘ′∩Left(v) = ∅ (see the definition (2.1)

of ect on page 22). Line (b) considers all sets Θ′ such that Θ′ ∩ Left(v) , ∅.

For each node v we can also compute the gray activity which is responsible

for ectv or ΣPv. If v is a leaf node (an activity i) then:

responsibleΣP(i) =















i if i is gray,

undef otherwise.

responsibleect(i) =















i if i is gray,

undef otherwise.
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ΣP = 21

ect = 44

ΣP = 26

ect = 49

ΣP = 11

ect = 34

ΣP = 11

ect = 34

ΣP = 10

ect = 42

ΣP = 15

ect = 45

esta = 0

pa = 5

ΣPa = 5

ecta = 5

ΣPa = 5

ecta = 5

estb = 25

pb = 9

ΣPb = 9

ectb = 34

ΣPb = 9

ectb = 34

estc = 30

pc = 5

ΣPc = 0

ectc = −∞

ΣPc = 5

ectc = 35

estd = 32

pd = 10

ΣPd = 10

ectd = 42

ΣPd = 10

ectd = 42

Figure 2.9: An example of a Θ-Λ-tree for Θ = {a, b, d} and Λ = {c}.

Operation Time Complexity

(Θ, Λ) := (∅, ∅) O(1)

(Θ, Λ) := (T, ∅) O(n log n)

(Θ, Λ) := (Θ \ {i}, Λ ∪ {i}) O(log n)

Θ := Θ ∪ {i} O(log n)

Λ := Λ ∪ {i} O(log n)

Λ := Λ \ {i} O(log n)

ect(Θ,Λ) O(1)

ectΘ O(1)

Table 2.2: Worst-case time complexities of operations on Θ-Λ-tree.

And for internal node v:

responsibleΣP(v) =















responsibleΣP (left (v)) if ΣP(v) = ΣPleft(v) +ΣPright(v)

responsibleΣP

(

right (v)
)

if ΣP(v) = ΣPleft(v) +ΣPright(v)

responsibleect(v) =



























responsibleect

(

right (v)
)

if ect(v) = ectright(v)

responsibleΣP

(

right (v)
)

if ect(v) = ectleft(v) +ΣPright(v)

responsibleect (left (v)) if ect(v) = ectleft(v) +ΣPright(v)

Thanks to these recursive formulas all these computations can be done within

usual operations with balanced binary trees without changing their time complex-

ities. Table 2.2 shows time complexities of selected operations on Θ-Λ-tree.
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2.5.7 Edge Finding

By the observation 1 (page 40) we known that the sets LCut(T, j) are nested and

by the property 1 (page 28) we know that for each activity i we are looking for the

biggest LCut(T, j) such that the rule (EF’) holds.

Let jn be the activity with the greatest lct j from the set T . The algorithm

starts with Θ = LCut(T, jn) = T and Λ = ∅. Activities are sequentially (in non-

increasing order by lct j) moved from the set Θ into the set Λ, i.e., white nodes are

discolored to gray. This wayΘ is always some LCut(T, j) (with an exception when

there are two activities with the same lct) and the set Λ is the set of all activities

i for which the rule (EF’) was not applied yet. As soon as ect(Θ, Λ) > lctΘ,

a responsible gray activity i is updated. Thanks to the property 1 the activity i

cannot be updated better, therefore it can be removed from the set Λ.

Algorithm 2.6: Edge Finding

1 (Θ, Λ) := (T, ∅) ;

2 Q := queue of all activities j ∈ T in non-increasing order of lct j ;

3 j := Q.first ;

4 while Q . size > 1 do begin

5 if ectΘ > lct j then

6 fail ; {Resource is overloaded }

7 (Θ, Λ) := (Θ \ { j}, Λ ∪ { j}) ;

8 Q.dequeue ;

9 j := Q.first ;

10 while ect(Θ, Λ) > lct j do begin

11 i := gray activity responsible for ect(Θ, Λ) ;

12 esti := max{esti, ectΘ} ;

13 Λ := Λ \ {i} ;

14 end ;

15 end ;

Note that at line 11 there has to be some gray activity responsible for ect(Θ, Λ)

because otherwise we would end up by fail on line 11. The lines 5 and 6 make

the same check as Overload Checking algorithm therefore they are not mandatory

and can be removed.

During the entire run of the algorithm, the maximum number of iterations of

the inner while loop (lines 10–14) is n, because each iteration removes an activity

from the set Λ. Similarly, the number of iterations of the outer loop is n, because

each time an activity is removed from the queue Q. According to the table 2.2 time

complexity of each single line within the loops is O(log n) maximum. Therefore
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the worst-case time complexity of the whole algorithm is O(n log n).

Note that at the beginning Θ = T and Λ = ∅, hence there are no gray activities

and therefore ectk = ectk and ΣPk = ΣPk for each node k. Hence we can save some

time by building the initial Θ-Λ-tree as a “normal” Θ-tree.

2.6 Experimental Results

For our tests we took several common jobshop instances from the OR library [1].

The benchmark problem is to compute a destructive lower bound using a shaving

technique [23]. A destructive lower bound is a minimum length of the schedule,

for which we are not able to proof infeasibility. It is a good benchmark problem

because there is no influence of a search heuristic.

Shaving is similar to the proof by a contradiction. We choose an activity i,

limit its esti or lcti and propagate. If an infeasibility is found then the limitation

was invalid and so we can decrease lcti or increase esti. To limit CPU time, shaving

was used for each activity only once. For more details about shaving see [23].

Table 2.3 shows the results. We measured the CPU4 time (in seconds) needed

to prove the lower bound. In other words the propagation is done twice: with

the upper bound LB and LB-1. Column T1 shows total running times when

presented O(n log n) filtering algorithms are used (overload checking, detectable

precedences, not-first/not-last and edge-finding). Column T2 shows total run-

ning times when quadratic algorithms are used: quadratic overload checking, not-

first/not-last from [27], edge-finding from [24] and O(n log n) detectable prece-

dences.

As can be seen, the new algorithms are strictly faster and the speedup is in-

creasing with the growing number of jobs.

4Benchmarks were performed on Intel Pentium Centrino 1300MHz
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Prob. Size LB T1 T2

abz5 10 x 10 1196 1.363 1.696

abz6 10 x 10 941 1.717 2.156

ft10 10 x 10 911 1.530 1.949

orb01 10 x 10 1017 1.649 2.123

orb02 10 x 10 869 1.415 1.796

la21 15 x 10 1033 0.691 1.030

la22 15 x 10 925 3.230 4.902

la36 15 x 15 1267 5.012 7.854

la37 15 x 15 1397 2.369 3.584

ta01 15 x 15 1224 8.641 13.66

ta02 15 x 15 1210 6.618 10.41

la26 20 x 10 1218 0.597 1.030

la27 20 x 10 1235 0.745 1.260

la29 20 x 10 1119 2.949 4.954

abz7 20 x 15 651 2.973 4.967

abz8 20 x 15 621 10.71 18.36

ta11 20 x 15 1295 13.24 23.26

ta12 20 x 15 1336 15.64 26.60

ta21 20 x 20 1546 34.98 61.63

ta22 20 x 20 1501 23.06 40.83

yn1 20 x 20 816 24.35 42.70

yn2 20 x 20 842 20.77 36.19

ta31 30 x 15 1764 3.397 7.901

ta32 30 x 15 1774 4.829 11.64

swv11 50 x 10 2983 12.02 39.24

swv12 50 x 10 2972 15.43 46.32

ta51 50 x 15 2760 7.695 26.14

ta52 50 x 15 2756 8.056 27.37

ta71 100 x 20 5464 72.07 432.5

ta72 100 x 20 5181 72.15 432.1

Table 2.3: Destructive Lower Bounds
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Chapter 3

Optional Activities

3.1 Motivation

Nowadays, many practical scheduling problems have to deal with alternatives –

activities which can choose their resource, or activities which exist only if a partic-

ular alternative of processing is chosen. From the resource point of view, it is not

yet decided whether such activities will be in the final schedule or not. Therefore

we will call such activities optional.

For an optional activity, we would like to speculate what would happen if

the activity is processed by the resource. This chapter presents strong filtering

algorithms for a unary resource with optional activities.

3.2 History

Traditionally, resource constraints are not designed to handle optional activities

properly. There are only limited ways how to model them:

Dummy activities. It is a workaround for constraint solvers which do not allow

to add more activities on the resource during a search (i.e., resource con-

straint is not dynamic [5]). Processing times of activities are changed from

constants to domain variables. Several “dummy” activities with possible

processing times 〈0, ∞) are added on the resource as a reserve for later ac-

tivity addition. Filtering algorithms work as usual, but they use the minimal

possible processing time instead of the original constant processing time.

Note that dummy activities have no influence on other activities on the re-

source, because their processing time can be zero. Once an alternative is

chosen, a dummy activity is turned into a regular activity (i.e., the minimal

processing time is no longer zero). The main disadvantage of this approach
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is that the impossibility to use a particular alternative cannot be detected

before that alternative is actually tried.

Filtering of options. The idea is to run a filtering algorithm several times, each

time with one of the optional activities added on the resource. When a

fail is found then the optional activity is rejected. Otherwise bounds of

the optional activity can be adjusted. [6] introduces so called PEX-Edge

Finding with time complexity O(n3). This is a pretty strong propagation,

however rather time consuming.

Modified filtering algorithms. Regular and optional activities are treated differ-

ently: optional activities do not influence any other activity on the resource,

while regular activities influence other regular activities and also optional

activities. Most of the filtering algorithms can be modified this way with-

out changing their time complexities. However, this approach is a little bit

weaker than the previous one, because the previous approach also checks

whether the addition of a optional activity would not cause an immediate

fail.

Cumulative resources. If we have a set of similar alternative machines, this set

can be modeled as a cumulative resource. This additional (redundant) con-

straint can improve the propagation before activities are distributed among

machines. There is also a special filtering algorithm [38] designed to handle

this type of alternatives.

3.3 New Approach

The approach described in this chapter was published in [35, 36]. The idea is to

use Θ-Λ-tree data structure to model optional activities.

Let us start with the basic notation. To handle optional activities we extend

each activity i by a variable called existsi with the domain {true, false}. When

existsi = true then i is a regular activity, when existsi ∈ {true, false} then i is

an optional activity. Finally when existsi = false we simply exclude this activity

from all our considerations.

To make the notation concerning optional activities more simple, let R be the

set of all regular activities and O the set of all optional activities, T = R ∪ O,

R ∩ O = ∅.

For optional activities, we would like to consider the following questions:

1. If an optional activity should be processed by the resource (i.e., if an op-

tional activity is changed to a regular activity), would the resource be over-
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loaded? Recalling the rule (OL) the resource is overloaded if there is such

a set Ω ⊆ R that:

estΩ + pΩ > lctΩ

Certainly, if a resource is overloaded then the problem has no solution.

Hence if an addition of a optional activity i results in overloading then we

can conclude that existsi = false.

2. If the addition of an optional activity i does not result in overloading, what is

the earliest possible start time and the latest completion time of the activity i

with respect to the regular activities on the resource? We would like to apply

usual filtering algorithms for the activity i, however the activity i cannot

cause any change on regular activities.

3. If we add an optional activity i, will the first run of a filtering algorithm

result in a fail? For example the algorithm Detectable Precedences can in-

crease estk of some activity k so much that estk + pk > lctk. In that case we

can also propagate existsi = false.

The rest of this chapter shows how to extend filtering algorithms based on Θ-

tree to handle optional activities - namely Overload Checking, Not-First/Not-Last

and Detectable Precedences. Efficient algorithm for Edge Finding with optional

activities is a part of my future work.

3.4 Overload Checking with Optional Activities

This section presents modified Overload Checking algorithm which can handle

optional activities. The original overload rule (OL) remains valid, however we

must consider only regular activities R:

∀Ω ⊆ R :
(

lctΩ − estΩ < pΩ ⇒ fail
)

(OLo)

Now let us take into account an optional activity o ∈ O. If processing of this

activity would result in overloading then the activity can never be processed by

the resource:

∀Ω ⊆ R, o ∈ O :
(

lctΩ∪{o} − estΩ∪{o} < pΩ∪{o} ⇒ existso := false
)

(OLoe)

The proposition 1 (page 24) proves that these two rules are equivalent to:

∀ j ∈ R :
(

ectLCut(R, j) > lct j ⇒ fail
)

(OL′o)

∀ j ∈ R ∪ {o} :
(

ectLCut(R∪{o}, j) > lct j ⇒ existso := false
)

(OL′oe)
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where LCut(R, j) is (recall the definition (2.5) from the page 24):

LCut(R, j) =
{

k, k ∈ R & lctk ≤ lct j

}

Let us say that the activity j ∈ T is fixed and we want to find all activities o

for which the rule (OL′oe) propagates. Clearly lcto ≤ lct j, otherwise o < LCut(R ∪

{o}, j) and if the rule (OL′oe) holds than the resource is overloaded even without

optional activity o. The set of all applicable activities o is therefore:

LCut(O, j) =
{

o, o ∈ O & lcto ≤ lct j

}

With all these possible activities o what is the maximum value of ectLCut(R∪{o}, j)?

Recall definition (2.23) from page 44:

max
{

ectLCut(R∪{o}, j), o ∈ LCut (O, j)
}

= ect (LCut (R, j) , LCut (O, j))

Thus the rule (OL′oe) is applicable if and only if ect(LCut(R, j),LCut(O, j)) > lct j.

In this case the activity responsible for ect(LCut(R, j),LCut(O, j)) can be excluded

from the resource.

The following algorithm 3.1 detects overloading, it also deletes all optional

activities o such that an addition of this activity o alone causes an overload. Of

course, a combination of several optional activities may still cause an overload.

The algorithm is based on the idea above and on the observation 1 about nesting

of the sets LCut.

Note that it is possible that at the line 11 o = i. In this case at the next run

of the while cycle the value ect(Θ, Λ) is compared with lcti on the line 10 even

thought i is no longer in Θ nor in Λ. However that is not important: in this case

ect(Θ, Λ) > lcti can no longer hold because that would be already detected in the

previous run of the outer for cycle.

The worst-case time complexity of the algorithm isO(n log n). The inner while

loop is repeated n times maximum because each time an activity is removed from

the set Λ. The outer for loop has also n iterations, time complexity of each single

line is O(log n) maximum (see the table 2.2).

3.5 Detectable Precedences with Optional Activities

Let us recall the original propagation rule (DP) for detectable precedences from

the page 31. The rule is designed only for regular activities therefore we have to

replace the set T by R:

∀i ∈ R : esti := max
{

esti, ectDPrec(R,i)

}
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Algorithm 3.1: Overload Checking with Optional Activities

1 (Θ, Λ) := (∅, ∅) ;

2 for i ∈ T in non-decreasing order of lcti do begin

3 if i is a optional activity then

4 Λ := Λ ∪ {i} ;

5 else begin

6 Θ := Θ ∪ {i} ;

7 if ectΘ > lcti then

8 fail ; {No solution exists }

9 end ;

10 while ect(Θ, Λ) > lcti do begin

11 o := optional activity responsible for ect(Θ, Λ) ;

12 existso := false ;

13 Λ := Λ \ {o} ;

14 end ;

15 end ;

where

DPrec(R, i) =
{

j, j ∈ R & esti + pi > lct j − p j & j , i
}

Regular activities also influence optional activities therefore we can extend the

rule in the following way:

∀i ∈ T : esti := max
{

esti, ectDPrec(R,i)

}

(DPo)

And a symmetric rule:

∀i ∈ T : lcti := min
{

lcti, lstDSucc(R,i)

}

(DPo)

where

DSucc(R, i) =
{

j, j ∈ R & est j + p j > lcti − pi & j , i
}

The second rule follows. Let i ∈ R be a regular activity, o ∈ O an optional

activity and let o ≪ i be a detectable precedence. If o becomes a regular activity

then esti will be updated by the rule above to max
{

esti, ectDPrec(R∪{o},i)

}

. However

this change of esti may be unfeasible (immediate fail) when:

max
{

esti, ectDPrec(R∪{o},i)

}

+ pi > lcti
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In this case o cannot be processed by the resource and we can set existso to false.

The full rule is:

∀i ∈ R,∀o ∈ O such that o ≪ i is detectable :
(

ectDPrec(R∪{o},i) + pi > lcti ⇒ existso := false
)

(DPoe)

The algorithm for the rules (DPo) and (DPoe) can be found in [35, 36]. How-

ever the rule (DPoe) is not really necessary as we will see later in the proposition

8. But first let us prove the following lemma:

Lemma 2 Let i ∈ R be a regular activity, o ∈ O an optional activity and let i ≪ o

and o ≪ i be detectable precedences. Then full propagation according to the

rules (OLoe) and (DPo) sets existso to false.

Proof: Let us consider the moment when the rule (DPo) finishes propagation of

the precedence i ≪ o. The precedence becomes propagated therefore:

esto ≥ esti + pi

The precedence o ≪ i stays detectable even after propagation (see proposition 4),

therefore:

esti + pi > lcto − po

Combining these two inequalities we get:

esto > lcto − po

Therefore the rule (OLoe) for the set Ω = ∅ sets existso to false. ⊓⊔

Proposition 8 Full propagation using the rules (OLo), (OLoe), (DPo) and (DPo)

makes also all changes resulting from the rule (DPoe).

Proof: Let us consider a moment when all propagation using the rules (OLo),

(DPo) and (DPo) is done, i.e., the rule (OLo) did not detect fail and the rules (DPo)

and (DPo) are not able to find any change. In the following we prove that in

this moment the rule (DPoe) can be substituted by the rule (OLoe). Note that by

the Domain Reduction Theorem [2] the resulting fixpoint is independent on the

sequence in which the (monotonic) propagation rules are executed.

Let i ∈ R and o ∈ O be such activities that the rule (DPoe) sets existso to false.

We will prove that the same pruning can achieved using the rule (OLoe). Let Ψ be

such a subset of DPrec(R ∪ {o}, i) that:

estΨ + pΨ = ectDPrec(R∪{o},i) (3.1)
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Note that thanks to the definition of ect such set Ψ must exists and o ∈ Ψ because

otherwise the rule (OLo) would already end the propagation by fail.

We distinguish two cases: Ψ = {o} and Ψ , {o}.

1. Case Ψ = {o}. The rule (DPoe) sets existso to false, therefore:

ectDPrec(R∪{o},i) + pi > lcti

esto + po + pi > lcti by (3.1) and Ψ = {o}

Thus the precedence i ≪ o is detectable. The precedence o≪ i is detectable

too because {o} = Ψ ⊆ DPrec(R∪ {o}, i). Using the lemma 2 the rule (OLoe)

sets existso to false.

2. Case Ψ , {o}. For all activities j ∈ Ψ the precedences j ≪ i are detectable

because Ψ ⊆ DPrec(R ∪ {o}, i). By applications of the rules (DPo) and

(DPo) these precedences become propagated (recall definition 4) with the

exception of the precedence o ≪ i which is propagated only on the activity

o:

∀ j ∈ Ψ : lct j ≤ lcti − pi (3.2)

∀ j ∈ Ψ \ {o} : esti ≥ est j + p j (3.3)

Therefore:

lctΨ∪{i} = lcti (3.4)

estΨ∪{i} = estΨ (3.5)

For the second equality we use the fact that Ψ , {o} therefore there is a

regular activity j ∈ Ψ for which esti ≥ est j + p j by (3.3).

The rule (DPoe) sets existso to false, therefore:

ectDPrec(R∪{o},i) + pi > lcti

estΨ + pΨ + pi > lcti by (3.1)

estΨ∪{i} + pΨ∪{i} > lctΨ∪{i} by (3.4) and (3.5)

Thus the rule (OLoe) propagates for the activity o and the set Ω = (Ψ ∪ {i})\

{o} and sets existso to false.

⊓⊔

The algorithm 3.2 is a slightly modified algorithm 2.4 to handle also optional

activities using the rule (DPo). The worst-case time complexity of the algorithm

remains the same: O(n log n).
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Algorithm 3.2: Detectable Precedences with Optional Activities

1 Θ := ∅ ;

2 Q := queue of all regular activities j ∈ R in non-decreasing order of lct j − p j ;

3 for i ∈ T in non-decreasing order of esti + pi do begin

4 while esti + pi > lctQ.first − pQ.first do begin

5 Θ := Θ ∪ {Q.first} ;

6 Q . dequeue ;

7 end ;

8 est′i := max
{

esti, ectΘ\{i}
}

;

9 end ;

10 for i ∈ T do

11 esti := est′i ;

3.6 Not-First/Not-Last with Optional Activities

Let us recall the rule Not-Last (NL):

∀Ω ( R, ∀i ∈ (R \Ω) :

estΩ + pΩ > lcti − pi ⇒ lcti := min
{

lcti, max
{

lct j − p j, j ∈ Ω
}}

From this rule we will derive two propagation rules for optional activities:

1. Regular activities also influence optional activities:

∀Ω ⊆ R, ∀i ∈ (T \Ω) :

estΩ + pΩ > lcti − pi ⇒ lcti := min
{

lcti, max
{

lct j − p j, j ∈ Ω
}}

(NLo)

2. If an optional activity o becomes a regular activity then the rule not-last

may result in immediate fail by changing lcti below esti + pi. In this case the

activity o cannot be processed by the resource at all:

∀o ∈ O,∀Ω ( R ∪ {o}, o ∈ Ω,∀i ∈ (R \ Ω) :

estΩ + pΩ > lcti − pi & max
{

lct j − p j, j ∈ Ω
}

< esti + pi

⇒ existso := false (NLoe)

The following proposition proves that the propagation rule (NLoe) is not nec-

essary.
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Proposition 9 Full propagation according to the rules (OLo), (OLoe), (DPo) and

(DPo) makes also all changes resulting from the rule (NLoe).

Proof: Let us consider a moment when the rules (OLo), (DPo) and (DPo) are not

able to propagate any more. In the following we will prove that in this moment

the rule (OLoe) makes also all changes resulting from the rule (NLoe).

Let the rule (NLoe) propagates for o ∈ O, Ω ( R ∪ {o} and i ∈ R \ Ω. We

distinguish two cases: Ω = {o} and Ω , {o}.

1. Case Ω = {o}. Because the rule (NLoe) propagates we get:

esto + po > lcti − pi

lcto − po < esti + pi

Therefore there are detectable precedences i ≪ o and o ≪ i and by the

lemma 2 the rule (OLoe) sets existso to false.

2. Case Ω , {o}. Because the rule (NLoe) propagates we get:

max
{

lct j − p j, j ∈ Ω
}

< esti + pi

therefore:

∀ j ∈ Ω : lct j − p j < esti + pi

Thus for all j ∈ Ω there is a detectable precedence j ≪ i. These precedences

j≪ i are propagated using the rules (DPo) and (DPo), with exception of the

precedence o≪ i which is propagated only to the activity o:

∀ j ∈ Ω : lct j ≤ lcti − pi (3.6)

∀ j ∈ Ω \ {o} : esti ≥ est j + p j (3.7)

Therefore:

lctΩ∪{i} = lcti (3.8)

estΩ∪{i} = estΩ (3.9)

For the second equality we used the fact that Ω , {o} thus there is regular

activity j ∈ Ω such that esti ≥ est j + p j by 3.7.

The rule (NLoe) propagates, therefore:

estΩ + pΩ∪{i} ≥ lcti

estΩ∪{i} + pΩ∪{i} ≥ lctΩ∪{i} by (3.9) and (3.8)

Therefore the rule (OLoe) propagates and sets existso to false.
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⊓⊔

Let us return to the propagation rule (NLo). We can modify this rule in a

similar way as we modified the rule (NL) to (NL’):

∀i ∈ T : estNLSet(R,i) + pNLSet(R,i) > lcti − pi ⇒

lcti := min
{

lcti, max
{

lct j − p j, j ∈ NLSet(R, i)
}}

(NL′o)

where

NLSet(R, i) =
{

j, j ∈ R & lct j − p j < lcti & j , i
}

Proposition 10 Considering an activity i ∈ T, at most n−1 iterative applications

of the rule (NL′o) achieve the same filtering as one pass of the filtering according

to the rule (NLo).

Proof: Analogous to proof of proposition 3. ⊓⊔

The paper [36] presents an algorithm for propagation according to the rule

(NL′o) and a weaker version of the rule (NLoe). As we proved in proposition 9 the

rule (NLoe) is not really necessary. Therefore we can use a more simple algorithm

3.3 which propagates only according to the rule (NLoe). It is an easy modification

of the algorithm 2.5. Time worst-case time complexity remains O(n log n).

3.7 Experimental Results

Optional activities were tested on modified 10x10 jobshop instances from OR Li-

brary [1]. In each job, activities on 5th and 6th place were taken as alternatives.

Therefore in each problem there are 20 optional activities and 80 regular activ-

ities. Table 3.1 shows the results. Column LB is the destructive lower bound

computed by propagation only, column Opt is the optimal makespan. Column CH

is the number of choicepoints needed to find the optimal solution and prove the

optimality (i.e., optimal makespan used as the initial upper bound). Finally the

column T is the CPU1 time in seconds.

As can be seen in the table, propagation is strong, all the problems were solved

surprisingly quickly. However more experiments should be made, especially on

real life problem instances.

1Benchmarks were performed on Intel Pentium Centrino 1300MHz
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Algorithm 3.3: Not-Last with Optional Activities

1 for i ∈ T do

2 lct′i := lcti ;

3 Θ := ∅ ;

4 Q := queue of all activities j ∈ R in non-decreasing order of lct j − p j ;

5 for i ∈ T in non-decreasing order of lcti do begin

6 while lcti > lctQ.first − pQ.first do begin

7 j := Q . first ;

8 Θ := Θ ∪ { j} ;

9 Q . dequeue ;

10 end ;

11 if ectΘ\{i} > lcti − pi then

12 lct′i := min
{

lct j − p j, lct′i

}

;

13 end ;

14 for i ∈ T do

15 lcti := lct′i ;

Prob. Size LB Opt CH T

abz5-alt 10 x 10 1031 1093 283 0.336

abz6-alt 10 x 10 791 822 17 0.026

orb01-alt 10 x 10 894 947 9784 12.776

orb02-alt 10 x 10 708 747 284 0.328

ft10-alt 10 x 10 780 839 4814 6.298

la16-alt 10 x 10 838 842 27 0.022

la17-alt 10 x 10 673 676 24 0.021

la18-alt 10 x 10 743 750 179 0.200

la19-alt 10 x 10 686 731 84 0.103

la20-alt 10 x 10 809 809 14 0.014

Table 3.1: Experimental results for alternative activities
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Chapter 4

Batch processing with Setup Times

4.1 Introduction

Unary resources are often not sufficient to model real-life problems. In this chap-

ter we focus on a kind of resource which differs from the unary resource in two

aspects:

1. The resource is able to process more than one activity at a time. However

in this case the overlapping activities form a batch - they start and complete

together.

2. Once a batch is completed the resource needs a setup before the next batch

can start. The duration of the setup may depend on the type of activities in

the two adjacent batches.

Such environment is frequent in real-life scheduling problems where batches de-

scribe a collection of activities processed together, e.g., in the pool, and the setup

times describe the time necessary to prepare the resource for the next batch, e.g., to

clean up the pool. Batch processing and setup times impose additional constraints

to the problem and these constraints can be used to prune the search space.

In some sense batch processing can be seen as a mixture of cumulative and

disjunctive scheduling. The filtering algorithms for cumulative scheduling are

weak when applied to batch processing because they do not use information about

batches. The stronger filtering algorithms for disjunctive scheduling cannot be

applied directly to batch scheduling because of parallel activities in the batch.

Therefore we extended existing algorithms for disjunctive scheduling and design

new ones, namely:

• Edge Finding

• Not-First/Not-Last

• Not-Before/Not-After
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• Precedence Graph

• Sequence Composition

All these algorithms are presented in this chapter. The exception is the algorithm

Sequence Composition which can be found in [34].

4.2 Basic Notions

The following definition of batch processing is close to p-batching in traditional

scheduling [8], i.e., two overlapping activities in the resource must start at the

same time and they must finish at the same time. The activities processed together

form a batch.

We can restrict the number of activities processed together in a single batch

using capacity and compatibility restrictions (Figure 4.1). Let T be a set of all

activities on the resource. Each activity i ∈ T has two attributes: ci indicating

the capacity consumed by the activity and fi indicating the type of the activity

(family). The compatibility restriction requires that only activities of the same

family can be processed together. The capacity restriction limits the total capacity

of each batch by a constant C – the capacity of the resource1.

i

j
C

ci

c j

Figure 4.1: Activities of the same family (fi = f j) can be processed simultane-

ously.

C

j

i

l

ci

p f

pg

s f g

Figure 4.2: Example of two consecutive batches with families f and g.

1Renewable resource is assumed, i.e., the capacity is consumed only during the processing of

the activity.
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Because all activities processed in a batch start and complete together, they

have also identical duration. Thus we can assign the duration attribute to the

family rather than to a particular activity. Formally let F denotes the set of all

families – F = {fi, i ∈ T }. Then p f denotes the duration (processing time) of

every activity of family f .

A setup time must be inserted between each pair of consecutive batches. Be-

cause the setup time depends on types of both batches we say that the setup time

is sequence dependent. Formally s f g denotes the setup time between batches of

family f and family g. No setup is assumed between batches of the same family:

∀ f ∈ F : s f f = 0 (4.1)

Alike [9] we assume that the setup time satisfies the triangular inequality:

∀ f , g, h ∈ F : s f h ≤ s f g + sgh (4.2)

Not all resources fulfill this inequality. In this case we would not be able to esti-

mate setup times for a set of activities so accurately and the following algorithms

would be weaker.

Finally we extend the notation of the processing time to activities as well:

pi = pfi

Earliest starting time esti and latest completion time lcti are defined in the same

way as for the unary resource.

Let k be the number of families, k = |F |. The following filtering algorithms

are polynomial in k and n – their time complexity is O(kn2). However they re-

quire some preprocessing of setup times which has exponential time complexity

O(k22k). Therefore the key assumption of the following algorithms is that k is

much smaller than number of activities n = |T |. Note also that the preprocessing

can be done before the search starts, it is not necessary to repeat it in each search

node.

Setup Time Preprocessing

The previous paragraphs introduced the setup time between two families of activ-

ities. Now we extend this notion to bigger sets of families. In particular, let φ ⊆ F

be a set of activity families:

• s(φ) denotes the minimal setup time for the activities of families φ.

• s( f , φ) denotes the same as s(φ) but with the additional restriction that the

processing starts with the family f .
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• s(φ, f ) likewise, but the processing ends with the family f .

Unlike [9] we propose to compute setup times for different set of families

before the scheduling starts. We identify each set of families using a bitmap, i.e.,

each set is represented by a number. Thus the values of the these attributes can be

saved in an array with the access time O(1). We will show that these values can

be computed in the time complexity O(k22k).

Visibly:

∀φ ⊆ F : s(φ) = min{s( f , φ), f ∈ φ} (4.3)

Thus once we compute the function s( f , φ), the function s(φ) can be computed

using the previous formula in O(k2k).

For the sets φ with just one family, there are no setups used according to (4.1):

∀ f ∈ F : s( f , { f }) = 0

We can compute the value s( f , { f } ∪ φ) from the value s(g, φ) using the following

recursive formula (note that it requires the triangular inequality (4.2)):

∀φ ⊂ F, ∀ f ∈ (F \ φ) : s( f , { f } ∪ φ) = min{s f g + s(g, φ), g ∈ φ}

The worst-case time complexity of this computation is O(k22k). The function

s(φ, f ) can be computed symmetrically.

Consolidated Processing Time

In the following algorithms we will often need to compute the lower bound of the

processing time needed for a subset of activities. Let Ω ⊆ T be a set of activities,

c(Ω, f ) denotes the total capacity of the activities from Ω of the family f :

c(Ω, f ) =
∑

i∈Ω
fi= f

ci

Let u(Ω, f ) denotes the minimal time needed for processing of all activities of

the family f from Ω. This value is computed as a multiplication of the minimal

number of required batches and the processing time of the family f :

u(Ω, f ) =

⌈

c(Ω, f )

C

⌉

p f

Let FΩ be the set of all families in the set Ω – FΩ = {fi, i ∈ Ω}. The total

processing time u(Ω) of the set Ω without setups is:

u(Ω) =
∑

f∈FΩ

u(Ω, f )
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Finally the consolidated processing time p(Ω) for the set of activities Ω consists

of the pure processing time and the setup times:

p(Ω) = s(FΩ) + u(Ω)

If we know that the processing of the setΩ has to start or to end with one particular

activity j ∈ Ω we can estimate the processing time more precisely:

p( j,Ω) = s(f j, FΩ) + u(Ω)

p(Ω, j) = s(FΩ, f j) + u(Ω)

Once again, the earliest starting time estΩ and the latest completion time lctΩ
of the set Ω is defined the same way as on unary resource:

lctΩ = max{lcti, i ∈ Ω}

estΩ = min{esti, i ∈ Ω}

4.3 Filtering Algorithms

This section presents several filtering algorithms for batch processing with se-

quence dependent setup times. As usual each algorithm removes a different type

of inconsistent values therefore they can be used together to achieve better prun-

ing.

4.3.1 Overload Checking

The overload rule for the batch processing stays exactly the same as the rule (OL)

for the unary resource constraint. The only difference is in the computation of the

value p(Ω).

∀Ω ⊆ T : lctΩ − estΩ < p(Ω)⇒ fail (OLs)

The rule says that the problem has no solution if there is a set of activitiesΩwhich

cannot be processed within its bounds.

Fortunately it is not necessary to check this rule for every possible subset Ω of

T . It is enough to perform the check only for those sets Ω which form so-called

task intervals:

Definition 6 Let i, j ∈ T be two activities such that esti ≤ est j and lcti ≤ lct j.

Case i = j is also possible. A task interval [i, j] is the following set of activities:

[i, j] =
{

k, k ∈ T & estk ≥ esti & lctk ≤ lct j

}
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The notation [i, j] is adopted from [12, 13, 14].

We will show that in the rule (OLs) it is necessary to consider only sets Ω

which are time intervals:

∀i, j ∈ T : lct[i, j] − est[i, j] < p([i, j])⇒ fail (OL′s)

Proposition 11 The rules (OLs) and (OL′s) are equivalent.

Proof: It is necessary to prove that by considering smaller number of sets Ω we

do not lose any filtering, i.e., if there is a set Ω such that the rule (OLs) detects

infeasibility then there is also some time interval [i, j] such that the new rule (OL′s)

does the same.

Let the rule (OLs) hold for a setΩ ⊆ T . Consider a setΨ defined the following

way:

Ψ = {k, k ∈ T & estk ≥ estΩ & lctk ≤ lctΩ}

Clearly Ψ is a task interval. Moreover:

estΨ = estΩ

lctΨ = lctΩ

Ψ ⊇ Ω

u(Ψ) ≥ u(Ω)

FΨ ⊇ FΩ

s(FΨ) ≥ s(FΩ)

p(Ψ) ≥ p(Ω)

Therefore the rule (OL′s) holds for the set Ψ. ⊓⊔

The algorithm 4.1 checks the rule (OL′s) for all task intervals. Note that at on

the line 9 the set Ω is a task interval only when esti ≤ est j. However in any case

estΩ = esti and lctΩ ≤ lct j therefore these additional checks at the line 9 make

no harm2. This is a reoccurring pattern which we will see again in the following

algorithms. But we will not draw attention to it anymore.

The worst-case time complexity of the algorithm is O(n2).

4.3.2 Not-Before/Not-After

Consider an arbitrary set Ω ⊂ T and an activity i < Ω. If we schedule the activity

i before the activities Ω, then processing of the set Ω can start at first in the time

2Note that we cannot just ignore activities i with esti > est j because they must be also included

in the set Ω (if lcti ≤ lct j). In practice the algorithm can be implemented more effectively but that

would unnecessarily complicate the presentation of the main idea.
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Algorithm 4.1: Overload Checking for Batch Processing

1 for j ∈ T do begin

2 Ω := ∅ ;

3 for i ∈ T in non-increasing order of esti do begin

4 if lcti > lct j then

5 continue ;

6 Ω := Ω ∪ {i} ;

7 if lct j − esti < p(Ω) then fail ;

8 end ;

9 end ;

esti + pi + s(f i, FΩ ∪ {fi}) + u(Ω) > lctΩ

i j l

esti lctΩ lcti

sf jfl

pi
p j pl

fi f j fl

sfi f j

Figure 4.3: An example of the rule not-before.

esti + pi. Processing of activities in Ω needs time u(Ω) + s(f i, FΩ ∪ {fi}) because

the resource is already adjusted for processing of family fi. If such a schedule

is not possible (i.e. processing of Ω ends after lctΩ) then the activity i cannot be

scheduled before Ω:

∀Ω ⊂ T,∀i ∈ (T \ Ω) : esti + pi + u(Ω) + s(fi, FΩ ∪ {fi}) > lctΩ ⇒ i 3 Ω

When the activity i cannot be processed before the activities in Ω then pro-

cessing of the activity i can start at first together with the first activity from Ω3:

i3 Ω ⇒ esti := max {esti, estΩ}

The whole rule not-before is:

∀Ω ⊂ T,∀i ∈ (T \Ω) :

esti + pi + u(Ω) + s(fi, FΩ ∪ {fi}) > lctΩ ⇒ esti := max {esti, estΩ} (NB)

3The new value of esti could be set even better, for example in the case when there is no activity

in Ω with the family with fi. However such situation is detected by the rule not-first (NFs) which

will be given on page 74. Therefore such improvement of the rule not-before can save some time

but would not improve the resulting fixpoint.
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There is also a symmetric rule not-after:

∀Ω ⊂ T,∀i ∈ (T \Ω) :

lcti − pi − u(Ω) − s(FΩ ∪ {fi}, fi) < estΩ ⇒ lcti := min {lcti, lctΩ} (NA)

The idea behind both rules is the same therefore in the following we will deal only

with the rule (NB).

Again it is enough to check the rule only for task intervals:

∀ j, l ∈ T,∀i ∈ (T \ [ j, l]) :

esti + pi + u([ j, l]) + s(fi, F[ j,l] ∪ {fi}) > lct[ j,l]

⇒ esti := max
{

esti, est j

}

(NB′)

Proposition 12 The rules (NB) and (NB′) are equivalent.

Proof: Analogous to the proof of proposition 11. Let the rule (NB) holds for a set

Ω ⊆ T and an activity i ∈ T \Ω. Let the set Ψ be defined the following way:

Ψ = {k, k ∈ T & estk ≥ estΩ & lctk ≤ lctΩ}

Note that i < Ψ because otherwise esti ≥ estΩ and the rule (NB) achieves nothing.

The set Ψ is a task interval, the rule (NB′) holds for it and propagates at least

the same as (NB) for the set Ω. ⊓⊔

Moreover we do not have to check the condition of the not-before rule (NB′)

for each task interval separately. The following proposition gives a hint how to do

it more efficiently.

Observation 4 Let i be an activity of the family g and j be another arbitrary

activity. The rule (NB′) sets esti to est j if and only if:

esti > min
{

lct[ j,l] − s(g, F[ j,l] ∪ {g}) − u([ j, l]) − pg, l ∈ T
}

(4.4)

The reason is that the inequality (4.4) holds if and only if there is a task interval

[ j, l] such that (NB′) holds.

Notice that the right side of the inequality (4.4) is independent of a particular

activity i. It depends only on the family g of the activity i so we can compute

the value of the right side just once and then use the result for all activities of the

family g. The algorithm 4.2 does exactly that. The worst-case time complexity of

this algorithm is O(kn2).
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Algorithm 4.2: Not-Before/Not-After

1 for g ∈ F do begin

2 for j ∈ T do begin

3 m := ∞ ;

4 Ω := ∅ ;

5 for l ∈ T in non-decreasing order of lctl do begin

6 if estl < est j then

7 continue ;

8 Ω := Ω ∪ {l} ;

9 m := min{lctl − s(g, FΩ ∪ {g}) − u(Ω) − pg,m};

10 end ;

11 for i ∈ T such that fi = g and m < esti < est j do

12 esti := est j ;

13 end ;

14 end ;

4.3.3 Edge Finding

Like the rules not-before/not-after, the edge finding rule is trying to find a relative

position of the activity i in respect to the set of activities Ω. Now we are asking

whether the activity i can be processed together with the activities in Ω. If the

answer is no then i must be processed either before or after all the activities in Ω.

Consider again an arbitrary set Ω ⊂ T and an activity i < Ω. If there is not enough

time for processing activities Ω ∪ {i} in the interval 〈estΩ, lctΩ〉, then the activity i

has to be scheduled before or after all the activities from Ω:

∀Ω ⊂ T,∀i ∈ (T \ Ω) : lctΩ − estΩ < p(Ω ∪ {i}) ⇒ (Ω ≪ i or i ≪ Ω) (4.5)

Now we need to decide if the activity i has to be scheduled before Ω or after it.

For that decision we can use the not-before and not-after rules. If the not-before

rule (NB) holds then Ω≪ i and esti can be changed:

Ω ≪ i ⇒

esti := max {esti, max {estΩ′ + u(Ω′) + s (FΩ′ ∪ {f i} , fi) , Ω
′ ⊆ Ω}} (4.6)

The whole edge finding rule is:

∀Ω ⊂ T,∀i ∈ (T \Ω) :

lctΩ − estΩ < p (Ω ∪ {i})

& esti + pi + u (Ω) + s (fi, FΩ ∪ {fi}) > lctΩ

⇒ esti := max {esti, max {estΩ′ + u(Ω′) + s(FΩ′ ∪ {fi}, fi), Ω
′ ⊆ Ω}} (EFs)
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There is also a symmetric rule updating lcti.

Note that the rule (EFs) is stronger than the following simple rewrite of the

rule (EF) for unary resources:

lctΩ − estΩ∪{i} < p(Ω ∪ {i}) ⇒ Ω ≪ i

The rule (NB) prevents the activity i to form a batch with another activity from

the set Ω. That is not the case for the simpler rule above because it allows such a

batch even before estΩ what is obviously not possible.

Once again it is enough to consider only sets Ω in the form of task intervals

without lost any filtering power:

∀ j, l ∈ T,∀i ∈ (T \ [ j, l]) :

lct[ j,l] − est[ j,l] < p([ j, l] ∪ {i})

& esti + pi + u([ j, l]) + s(fi, F[ j,l] ∪ {fi}) > lct[ j,l]

⇒ esti := max {esti, max {estΩ′ + u(Ω′) + s(FΩ′ ∪ {fi} , fi), Ω
′ ⊆ [ j, l]}} (EF′s)

Proposition 13 If the resource is not overloaded then the rules (EFs) and (EF′s)

are equivalent.

Proof: Analogous to the proof of propositions 11 and 12. Let the rule (EFs) holds

for an activity i ∈ T and a set Ω ⊆ T \ {i}. And let the set Ψ be defined as:

Ψ = {k, k ∈ T & estk ≥ estΩ & lctk ≤ lctΩ}

Note that i < Ψ because otherwise the resource would be overloaded.

The set Ψ is a task interval, the rule (EF′s) holds for it and propagates at least

the same as (EFs) for the set Ω. ⊓⊔

The algorithm for the rule (EF′s) follows. It is a modification of the Edge

Finding algorithm for the unary resource from [23].

Let us choose an activity l and a family g. We would like to check the rule

(EF′s) for all activities i of the family g (i.e., fi = g) and all task intervals [ j, l].

For simplicity, let us assume that the there are not duplicities in earliest starting

times est j. Let Ω0 ( Ω1 ( · · · ( Ωx be a queue of all the task intervals [ j, l] such

that estΩ0
> estΩ1

> · · · > estΩx
. In other words Ω0 = [ j0, l],Ω1 = [ j1, l], . . . ,Ωx =

[ jx, l] where est j0 > est j1 > · · · > est jx
. Let i0, i1, . . . iy denotes a queue of activities

of the family g sorted in non-decreasing order by capacity cik . In each step of the

algorithm we consider an application of the edge finding rule to the pair Ωx, iy

from the top of these queues. One of the following four cases must happen:
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1. lctiy
≤ lctΩx

. In this case we will show that if the rule (EFs) holds then

i ≪ Ω and the symmetrical algorithm edge finding together with overload

checking (OLs) deduce fail. Therefore we can ignore this case4.

Assume that the rule (EF′s) holds for iy and Ωx. Therefore also (4.5) holds.

Together with lctiy ≤ lctΩx
it implies:

lctiy − estΩx
≤ lctΩx

− estΩx
< p(Ωx ∪ {iy})

It is obvious that:

p(Ωx ∪ {iy}) ≤ u(Ωx) + pg + s(FΩx
∪ {g}, g)

Therefore:

lctiy − estΩx
< u(Ωx) + pg + s(FΩx

∪ {g}, g)

Therefore the rule not-after (NA) holds. Together with (4.5) we get i ≪

Ω. This is detected by the symmetrical algorithm edge finding and lcti is

updated to:

lctiy := min
{

lctiy , lctΩx
− u(Ωx) − s(g, FΩx

∪ {g})
}

Thus:

lctiy ≤ lctΩx
− u(Ωx) − s(g, FΩx

∪ {g})

The not-before rule (which is a part of (EF′s)) still holds for iy and Ωx there-

fore:

estiy > lctΩx
− pg − u(Ωx) − s(g, FΩx

∪ {g})

Now consider the set Ψ = {iy}:

lctΨ − estΨ = lctiy − estiy ≤

≤
(

lctΩx
− u (Ωx) − s

(

g, FΩx
∪ {g}

))

− estiy <

<
(

lctΩx
− u (Ωx) − s

(

g, FΩx
∪ {g}

))

−
(

lctΩx
− pg − u (Ωx) − s

(

g, FΩx
∪ {g}

)

)

=

= pg = pΨ

Hence lctΨ − estΨ < pΨ and the rule (OLs) deduces fail.

We have shown that in the case lctiy ≤ lctΩx
the rule (EF′s) can be ignored.

And because lctΩ0
= lctΩ1

= · · · = lctΩx
the rule (EF′s) can be ignored also

4Similarly the symmetrical algorithm for j ≪ Ω ignores the case when estiy ≥ estΩx
. So the

pair Ωx and iy is ignored by both sides of the Edge Finding algorithm when lctiy ≤ lctΩx
and

estiy ≥ estΩx
. And in this case case we cannot apply the rule (EF′s) at all because iy ∈ Ωx.
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for the activity iy and all sets Ω0,Ω1, . . . ,Ωx. Hence we can remove iy from

the queue i0, i1, . . . , iy.

In the following three cases we expect that lctiy > lctΩx
and therefore iy < Ωx.

2. The set Ωx and the activity iy do not satisfy the condition (4.5) therefore

the activity iy can be processed together with Ωx. Any activity i0, i1, . . . , iy−1

can be processed together with Ωx as well because it requires the same or

less capacity than the activity iy. Hence we can remove the set Ωx from the

queue Ω0,Ω1, . . . ,Ωx.

3. The setΩx and the activity iy do not satisfy the condition (NB) therefore

the activity iy can be processed before the Ωx. In this case the activity iy

can be processed before any set Ω0,Ω1, . . . ,Ωx−1. Hence we can remove the

activity iy from the queue i0, i1, . . . iy.

4. The set Ωx and the activity iy satisfy both conditions (NB) and (4.5).

Then we can change value estiy using the rule (EF′s). This new value cannot

be further improved by any other set Ω0,Ω1, . . . ,Ωx−1 because of the form

of the rule (EF′s). Hence we can remove iy from the queue i0, i1, . . . , iy.

The above analysis explains what pairs of activity and task interval needs to be

checked. We have shown that only the case 4 above contributes to change of the

value estiy using the rule (EF′s). When we want to change the value estiy according

to the rule (EF′s) then we need to know the following value zx:

zx = max{estΩ′ + u(Ω′) + s(FΩ′ ∪ {g}, g), Ω′ ⊆ Ωx}

Now we will show how to compute the value zx efficiently.

Consider an arbitrary set Ω′ ⊆ Ωx and the set Φ = {k, k ∈ Ωx & estk ≥ estΩ′}.

It is obvious that:

estΩ′ + u(Ω′) + s(FΩ′ ∪ {g}, g) ≤ estΦ + u(Φ) + s(FΦ ∪ {g}, g)

So we can choose only the sets Ω′ in the form of a task interval [ j, l] such that

lctl = lctΩx
. These task intervals are exactly the sets Ω0,Ω1, . . . ,Ωx. Hence:

zx = max{estΩ′ + u(Ω′) + s(FΩ′ ∪ {g}, g), Ω′ ∈ {Ω0,Ω1, . . . ,Ωx}}

Therefore we can compute zx recursively using the following formula:

z0 = −∞

zx = max{zx−1, estΩx
+ u(Ωx) + s(FΩx

∪ {g}, g)}

The above analysis was used for the algorithm 4.3. The algorithm assumes

that activities are sorted in non-increasing order by est j and also by values of c j,

i.e., two sorted lists of activities are prepared in advance. The worst-case time

complexity of the algorithm is O(kn2).
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Algorithm 4.3: Edge Finding for Batch Processing

1 for g ∈ F do begin

2 for l ∈ T do begin

3 Ω−1 := ∅ ;

4 z−1 := −∞ ;

5 x := 0 ;

6 for j ∈ T in the non-increasing order of est j do begin

7 if lct j > lctl then

8 continue ;

9 Ωx := Ωx ∪ { j} ;

10 zx := max ( zx−1, est j + u(Ωx) + s(FΩx
∪ {g}) ) ;

11 x := x+1;

12 end ;

13 QΩ := queue of time intervals [ j, l] sorted by decreasing est j ;

14 Qi := queue of activities with family g sorted by non-increasing ci ;

15 while QΩ is not empty and Qi is not empty do begin

16 y := Qi . top ;

17 Ωx := QΩ . top ;

18 if lcty ≤ lctl then

19 / / case 1

20 Qi . dequeue ;

21 else if lctl − estΩx
≥ p(Ωx ∪ {y}) then

22 / / case 2

23 QΩ . dequeue ;

24 else if lctl − esty ≥ s(g, FΩx
∪ {g}) + u(Ωx) + pg then

25 / / case 3

26 Qi . dequeue ;

27 else begin

28 / / case 4

29 esty := max ( esty, zx ) ;

30 Qi . dequeue ;

31 end ;

32 end ;

33 end ;

34 end ;
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esti + p(i,Ω ∪ {i}) > lctΩ

j

i l

estΩ esti lctΩ

sfifl

pfi
= pf j

pl

fi = f j fl

Figure 4.4: An example of the rule not-first

4.3.4 Not-First/Not-Last

The rule not-first is based on the following idea. Consider an arbitrary set Ω ( T

and an activity i ∈ T \Ω. Let us suppose that the activity i is processed before the

set Ω or in the first batch of the set Ω. Then the processing of the activities Ω∪ {i}

can start at first at esti and has to be completed at latest at lctΩ. If there is not

enough time for such processing then the assumption was wrong and the activity

i cannot be processed before the first batch of the set Ω completes:

esti + p(i,Ω ∪ {i}) > lctΩ ⇒ i ⊀ Ω (4.7)

The fact that i ⊀ Ω allows to adjust esti:

i ⊀ Ω ⇒ esti := max
{

esti, min
{

est j + p j + sf j fi
, j ∈ Ω

}}

(4.8)

The full not-first rule is:

esti + p(i,Ω ∪ {i}) > lctΩ

⇒ esti := max
{

esti, min
{

est j + p j + sf j fi
, j ∈ Ω

}}

(NFs)

The following paragraphs describe the not-first algorithm from [31] which is

based on [27]. There is also another algorithm in [33] however this one is stronger.

Let us fix for a while an activity i which we will try to update. It is clear that if

there is some activity j ∈ Ω such that est j + p j + sf j fi
≤ esti then the set Ω cannot

change esti. The only activities which can possibly change esti are:

Ψ = { j, j ∈ T & j , i & est j + p j + sf j fi
> esti}

Therefore we will consider only sets Ω ⊆ Ψ. The algorithm 4.4 constructs the

set Ψ by adding one activity after another in non-decreasing order of lct j. The
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following two values are recomputed after each addition:

eftMin = min
{

est j + p j + sf j fi
, j ∈ Ψ

}

lst = min
{

lctΩ − p(i,Ω ∪ {i}), Ω ⊆ Ψ
}

If lst < esti then there is a set Ω ⊆ Ψ for which the rule (4.7) holds. But we do

not know the set Ω. However, we can use the rule (4.8) for the set Ψ instead – the

drawback is that the resulting increase of esti to eftMin will not be as good as it

could be using the right set Ω. But if we repeat the algorithm several times then

we get the same result (this is a resemblance to proposition 3).

Algorithm 4.4: Not-First/Not-Last for Batch Processing

1 for i ∈ T do begin

2 eftMin := ∞ ;

3 lst := ∞ ;

4 Ψ := ∅ ;

5 for j ∈ T in non-decreasing order of lct j do

6 if i , j and est j + p j + sf j fi
> esti then begin

7 Ψ := Ψ ∪ { j} ;

8 eftMin := min
(

eftMin, est j + p j + sf j fi

)

;

9 lst := min
(

lst, lctΨ − p(i,Ψ)
)

;

10 if lst < esti then begin

11 esti := eftMin ;

12 break ;

13 end ;

14 end ;

15 end ;

The worst-case time complexity of the algorithm is O(n2).

4.3.5 Precedence Graph

In case of batch processing we do not design a separate algorithm for detectable

precedences and for a precedence graph. The results presented in this chapter are

a generalization of the chapters 2.4.6 and 2.4.7.

First we would like to generalize the concept of detectable precedences to

batch processing. The activities i and j can be processed together if:

f j = fi & c j + ci ≤ C & min
{

lct j, lcti

}

−max
{

est j, esti

}

≥ p j (4.9)
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And the activity i can be processed before the activity j if:

esti + pi + sfi f j
≤ lct j − p j (4.10)

If non of the conditions (4.9) and (4.10) holds then j ≪ i.

Definition 7 The precedence j ≪ i is called detectable if non of the conditions

(4.9) and (4.10) holds.

Filtering based on a precedence graph is simple. Take an activity i and build

the set Prec(i) of all its predecessors:

Prec(i) = { j, j ∈ T & j≪ i}

Then we propagate using the rule (4.6):

esti := max {esti, max {estΩ′ + u(Ω′) + s(FΩ′ ∪ {fi}, fi), Ω
′ ⊆ Prec(i)}} (PGs)

The algorithm 4.5 is based on this rule it has the worst-case time complexityO(n2).

Algorithm 4.5: Precedence Graph for Batch Processing

1 for i ∈ T do begin

2 Ω := ∅ ;

3 m := −∞ ;

4 for j ∈ T in non-increasing order of est j do

5 if j≪ i then begin

6 Ω := Ω ∪ { j} ;

7 m := max
(

m, est j+u(Ω)+s(FΩ ∪ {fi}, fi)
)

;

8 end ;

9 esti :=max(m, esti) ;

10 end ;

Once again the biggest problem of the algorithm is to find all precedences. We

would like to consider the following types of precedences:

1. Precedences from the original problem.

2. Precedences added during the search as search decisions.

3. Detectable precedences.

4. Precedences found by Edge Finding.

5. Transitive closure of all precedences mentioned above.

In the rest of this section we will prove the same results for batch processing that

we proved a for the unary resource. In particular:
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• Precedences found by Edge Finding become detectable therefore the item 4

is a subset of the item 3.

• Detectable precedences are not “forgotten” during propagation – once a

precedence is detectable it stays detectable even after arbitrary propagation.

• In item 5 it is enough to compute transitive closure of non-detectable prece-

dences, i.e., the precedences from items 1 and 2. Since the set of prece-

dences from the item 1 is static it is enough to recompute transitive closure

after addition of a new search decision.

The following proposition is a generalization of the proposition 5. It shows

that all precedences propagated by Edge Finding become detectable.

Proposition 14 When Edge Finding is unable to find further bound adjustments

then all precedences which the Edge Finding found are detectable.

Before proving the proposition we prove the following lemma:

Lemma 3 Let i, j ∈ T be two different activities and let esti + pi > lct j − sfi f j
.

Then j≪ i is detectable precedence.

Proof: We have to prove that neither of the conditions (4.9) and (4.10) holds.

With (4.10) it is easy – assumption of the lemma clearly contradicts it. With (4.9)

we distinguish two cases:

a) fi , f j. In that case clearly (4.9) does not hold.

b) fi = f j. In that case sfi f j
= 0 and therefore:

min
{

lct j, lcti

}

−max
{

est j, esti

}

≤ lct j − esti < pi

And therefore the rule (4.9) does not hold. ⊓⊔

Now back to the proof of the proposition 14:

Proof: Let us suppose that Edge Finding proved that Ω ≪ i. In the rest we

prove that for an arbitrary activity j ∈ Ω Edge Finding made esti so big that the

precedence j≪ i is detectable.

Edge Finding proved Ω≪ i so the condition (EFs) holds:

p(Ω ∪ {i}) > lctΩ − estΩ

u(Ω ∪ {i}) + s(FΩ ∪ {fi}) > lctΩ − estΩ

lctΩ − u(Ω ∪ {i}) − s(FΩ ∪ {fi}) < estΩ (4.11)
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Because Edge Finding is unable to further change the bounds according to (EFs):

esti≥max{estΩ′+u(Ω′)+s(FΩ′ ∪ {fi}, fi), Ω
′⊆Ω}

esti≥estΩ + u(Ω) + s(FΩ ∪ {fi}, fi)

In this inequality, estΩ can be replaced by the left side of the inequality (4.11):

esti > lctΩ − u(Ω ∪ {i}) − s(FΩ ∪ {fi}) + u(Ω) + s(FΩ ∪ {fi}, fi)

And because:

u(Ω) − u(Ω ∪ {i}) ≥ − pi

s(FΩ ∪ {fi}, fi) − s(FΩ ∪ {fi}) ≥ 0

lctΩ ≥ lct j

we get:

esti > lct j − pi

Therefore according to lemma 3 the precedence j≪ i is detectable. ⊓⊔

The following proposition is a generalization of the proposition 4 for batch

processing:

Proposition 15 Let j ≪ i be a detectable precedence. Then it stays detectable

even after arbitrary propagation.

Proof: Let esti and lct j be bounds before the propagation and let est′i and lct′j be

bounds after the propagation5.

First we prove that the condition (4.9) does not hold after the propagation.

Assume by contradiction that it is valid:

f j = fi & c j + ci ≤ C & min{lct′j, lct′i} −max{est′j, est′i} ≥ p j

Before the propagation the precedence j ≪ i is detectable therefore the condition

(4.9) did not hold. Since ci, c j, fi, f j cannot be changed by propagation we get

that:

min{lct j, lcti} −max{est j, esti} < p j

And because est′
i
≥ esti, est′

j
≥ est j, lct′i ≤ lcti and lct′j ≤ lct j:

min{lct′j, lct′i} −max{est′j, est′i} ≤ min{lct j, lcti} −max{est j, esti} < p j

5Values pi, p j, ci, c j, fi, f j cannot be changed during the propagation because they are constant
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what is a contradiction with the assumption:

min{lct′j, lct′i} −max{est′j, est′i} ≥ p j

Therefore the condition (4.9) does not hold after the propagation.

The condition (4.10) did not hold before the propagation:

esti + pi + sfi f j
> lct j − p j

And because est′
i
≥ esti and lct′j ≤ lct j:

est′i + pi + sfi f j
> lct′j − p j

I.e., (4.10) does not hold after the propagation either.

Thus non of the conditions (4.9), (4.10) holds after the propagation therefore

the precedence j≪ i stays detectable. ⊓⊔

The notion of propagated precedence can be also easily extended for batch

processing:

Definition 8 The precedence i ≪ j is called propagated if:

est j ≥ esti + pi + sfi f j

lcti ≤ lct j − p j − sfi f j

Notice that since both Edge Finding and Precedence Graph are based on the

rule (4.6) they make all their precedences propagated.

Now we can prove that also generalization of the lemma 1 is valid for batch

processing:

Proposition 16 Let a ≪ b, b≪ c and one of these precedences be detectable and

the second one propagated. Then the precedence a ≪ c is detectable.

Proof: We distinguish two cases:

1. a≪ b is detectable and b ≪ c is propagated.

Because the precedence b ≪ c is propagated:

estc − sfb fc
≥ estb + pb

The precedence a ≪ b is detectable therefore the inequalities (4.9) and

(4.10) do not hold:

estb + pb + sfb fa
> lcta − pa

estc − sfb fc
+ sfb fa

> lcta − pa
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Together with the triangular inequality for the setup times sfb fc
+ sfc fa

≥

sfb fa
:

estc + sfc fa
> lcta − pa

Thus according to lemma 3 the precedence a ≪ c is detectable.

2. a≪ b is propagated and b ≪ c is detectable.

Because the precedence a ≪ b is propagated:

lctb − pb ≥ lcta + sfa fb

The second precedence b ≪ c is detectable therefore the inequalities (4.9)

and (4.10) do not hold:

estc + pc + sfc fb
> lctb − pb

estc + pc + sfc fb
> lcta + sfa fb

We use the triangular inequality again, this time sfc fa
+ sfa fb

≥ sfc fb
:

estc + pc > lcta − sfc fa

Once again according to lemma 3 the precedence i ≪ j is detectable. ⊓⊔

Finally generalization of the proposition 6:

Proposition 17 Let i1, i2, . . . , in ∈ T and let i1 ≪ i2 ≪ · · · ≪ in be propagated

precedences and at least one of them is detectable. Then the precedence i1 ≪ in

is detectable.

Proof: The same as for the proposition 6. ⊓⊔

By proving the previous proposition we proved that batching resource with

setup times is in the point of view of detectable precedences very similar to the

simple unary resource. This allows using the same way to speed up computa-

tion of the transitive closure of precedences. If non-detectable precedences (i.e.,

precedences from the original problem plus search decisions) are kept separate

then the transitive closure of all precedences on the resource can be computed in

the following two steps:

• Compute the transitive closure of non-detectable precedences using any

standard algorithm.

• Add detectable precedences.

Because the set of non-detectable precedences does not change often it is ad-

vantageous to recompute transitive closure only when a new non-detectable prece-

dence is introduced.
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4.4 Experimental Results

All filtering algorithms described in this chapter were combined into one algo-

rithm as described by algorithm 4.6.

Algorithm 4.6: Computation of fixpoint for batch processing

1 repeat

2 repeat

3 repeat

4 repeat

5 Overload_Checking ;

6 Not_First / Not_Last ;

7 until no more changes found ;

8 Precedence_Graph ;

9 until no more changes found ;

10 Edge_Finding ;

11 until no more changes found ;

12 Not_Before / Not_After ;

13 until no more changes found ;

The order in which the algorithms are called is not important for the resulting

filtering. The selected order is the fastest for the tested problems.

The benchmark set can be found in [30]. Each benchmark problem is ran-

domly generated one resource problem with n ∈ 〈10, 200〉, k ∈ 〈2, 7〉 and resource

capacity C ∈ 〈5, 13〉. The search strategy is simple: take the activity which can be

scheduled first and schedule it in its earliest starting time. The table 1 shows the

results (column new) and comparison with the results of our previous results [33]

(column old). Time was measured on processor Intel Pentium Celeron 375MHz.

There are two reasons why the results are different:

• The old version did not use detectable precedences algorithm,

• The old version uses less effective not-first/not-last algorithm.

The table shows that these two improvements reduce the running time by one half

for a lot of problems. However number of backtracks decreased only for problems

d, p and z the n. There are two reasons for speed-up even without decreasing

number of backtracks:

1. The new version of the not-first/not-last algorithm is faster. The number of

its repetitions may have increased but this is not a common case.
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new old

problem n k solutions backtracks time backtracks time

a 30 3 88 12 1.24s 12 2.22s

b 25 5 56251 5016 16m 10s 5016 25m 30s

c 25 5 72 0 0.80s 0 1.78s

d 40 6 12 0 0.41s 1 1.02s

e 20 2 28 0 0.13s 0 0.20s

f 50 6 6 2 0.34s 2 0.70s

g 30 3 1690 77 21.96s 77 37.08s

h 75 5 12 2 1.38s 2 2.90s

i 50 5 48 44 3.44s 44 7.59s

j 50 5 10 4 0.69s 4 1.34s

k 50 7 9 0 0.72s 0 1.33s

l 50 5 4 0 0.20s 0 0.51s

m 50 3 3 3 0.16s 3 0.35s

n 30 5 39 13 0.79s 13 1.78s

o 50 5 32 8 1.62s 8 3.60s

p 30 3 270 18 3.53s 24 6.05s

q 50 7 228 0 12.44s 0 28.03s

r 50 7 324 0 22.79s 0 44.94s

s 100 7 50 0 11.31s 0 26.48s

t 200 7 8 0 7.50s 0 18.00s

v 100 7 240 0 54.26s 0 2m 6s

w 50 2 24 4 0.83s 4 1.36s

x 50 2 1368 384 39.57s 384 1m 8s

z 50 4 24 6 1.06s 7 2.14s

Table 4.1: Batch processing with sequence dependent setup times: Experimental

results

2. The filtering based on a detectable precedences is very fast. It particular

it can make a lot of filtering which was originally done by edge-finding.

Hence the slower edge-finding algorithm is not repeated so often.
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Chapter 5

Conclusions

This book explored only a few narrow topics within the wide area of global con-

straints in scheduling. For example I hardly mentioned such typical scheduling

constraints as cumulative resources or reservoirs, I completely omitted heuristics

and problematics of choosing best branching decisions, and I didn’t mention any

advanced search method although they play a key role in the process of finding a

solution.

But despite its limited scope I believe that this book casts some new light on

a few (but important) scheduling constraints from both theoretical and practical

point of view. New filtering algorithms for unary resource presented at the begin-

ning of this book move the worst-case complexity from O(n2) to O(n log n) and

are also experimentally confirmed to be faster than the previous ones. A novel ap-

proach for optional activities received very good acceptance on major constraint

programming conference CP 2004. Finally the chapter about batch processing

with sequence-dependent setup times provides efficient filtering algorithms for

this kind of resource.

I do not pretend that the work presented in this book is complete. On the

contrary there are still of lot of areas to explore further. I have tried to mention

some of them throughout this book but let me present few major topics I would

like to address in the future:

• An idempotent algorithm for detectable precedences as mentioned on page

41.

• An edge finding algorithm for unary resource with optional activities.

• A new filtering algorithms for cumulative resources inspired by Θ-tree.

• Optional activities on cumulative resources.

Moreover with the success of CP scheduling in practice there is a flow of new

scientific challenges coming from real life problems. So happily there is still a lot

of work to do.
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List of Symbols

c(Ω, f ) Total capacity of the activities from Ω of the family f

ci Capacity required by the activity i on batching resource.

DPrec(T, i) Set of detectable predecessors of the activity i from the set T

DSucc(R, i) Set of detectable successors of the activity i from the set R

pΩ Duration of the set Ω

pi Duration of the activity i

ectΩ The earliest completion time of the set of activities Ω

ect(Θ,Λ) Maximum of ectΘ∪{i} where i ∈ Λ

ectv Earliest completion time of a subtree of v with at most one op-

tional/gray activity included

estΩ Earliest starting time of the set Ω

esti Earliest starting time of the activity i

existsi Boolean CP variable associated with the activity i which states

whether the activity will be in the final resulting or not.

fi Family of the activity i (for batching resource)

lctΩ Latest completion time of the set Ω

lcti Latest completion time of the activity i

LCut(T, j) Set of all activities from T which cannot complete sooner than

activity j

Leaves(v) Set of leave nodes (activities) of the subtree rooted at the node v
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Left(v) Shortcut for Leaves(left(v))

left(v) Left son of the node v in binary tree

lstΩ Latest start time of the set Ω

NLSet(T, i) Set of activities from the set T which can possibly update bounds

of the activity i by the rule Not-Last

Prec(i) Set of all predecessors of the activity i

responsibleect(v) Optional/gray activity responsible for the value of ectv

responsibleΣP(v) Optional/gray activity responsible for the value of ΣPv

Right(v) Shortcut for Leaves(right(v))

right(v) Right son of the node v in binary tree

s f g Setup time needed by resource between processing of activities

with families f and g

ΣPv Shortcut for pLeaves(v)

ΣPv Maximum processing time of activities in a subtree of v with at

most one optional/gray activity included

u(Ω, f ) Minimal time needed for processing of all activities of family f

from Ω
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[26] Jean-Charles Régin. Generalized arc consistency for global cardinality con-

straint. In Proceedings of the 13th National Conference on AI (AAAI/I-

AAI’96), volume 1, pages 209–215, Portland, Oregon, USA, August 1996.

AAAI Press / The MIT Press. ISBN 0-262-51091-X.

[27] Philippe Torres and Pierre Lopez. On not-first/not-last conditions in dis-

junctive scheduling. European Journal of Operational Research, 127(2):

332–343, 1999.

[28] C. Tsang. Foundations of Constraint Satisfaction. Academic Press, New

York, 1993.

[29] W.J. van Hoeve. The alldiff constraint: A survey. In Proceedings of ERCIM

Workshop of Constraints, 2001.



98 BIBLIOGRAPHY

[30] P. Vilı́m and R. Barták. A benchmark set for batch processing with sequence

dependent setup times, 2002. URL http://kti.mff.cuni.cz/˜vilim/

batch.

[31] Petr Vilı́m. Batch processing with sequence dependent setup times: New

results. In Proceedings of the 4th Workshop of Constraint Programming

for Decision and Control, CPDC’02, Gliwice, Poland, 2002. URL http:

//kti.ms.mff.cuni.cz/˜vilim/cpdc2002.pdf.

[32] Petr Vilı́m. O(n log n) filtering algorithms for unary resource constraint. In
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