
O(n log n) Filtering Algorithms for Unary
Resource Constraint

Petr Viĺım

Charles University
Faculty of Mathematics and Physics

Malostranské náměst́ı 2/25, Praha 1, Czech Republic
vilim@kti.mff.cuni.cz

Abstract. So far, edge-finding is the only one major filtering algorithm
for unary resource constraint with time complexity O(n log n). This pa-
per proposes O(n log n) versions of another two filtering algorithms: not-
first/not-last and propagation of detectable precedences. These two al-
gorithms can be used together with edge-finding to further improve the
filtering. This paper also propose new O(n log n) implementation of fail
detection (overload checking).

1 Introduction

In scheduling, unary resource is an often used generalization of a machine or a
job. Unary resource models a set of non-interruptible activities T which must
not overlap in a schedule.

Each activity i ∈ T has following requirements:

– earliest possible starting time esti

– latest possible completion time lcti

– processing time pi

A (sub)problem is to find a schedule satisfying all these requirements. One
of the most used technique to solve this problem is constraint programming.

In constraint programming, we associate an unary resource constraint with
each unary resource. A purpose of such constraint is to reduce a search space
by tightening time bounds esti and lcti. This process of elimination of infeasible
values is called a propagation, actual propagation algorithm is often called a
filtering algorithm.

Naturally, it is not efficient to remove all infeasible values. Rather we use fast
but not complete algorithms which can find only some impossible assignments.
These filtering algorithms are repeated in every node of a search tree, therefore
their speed and filtering power are crucial.

Today, edge-finding and not-first/not-last are the mainly used filtering algo-
rithms for the unary resource constraint. The edge-finding algorithm has time
complexity O(n log n) [3], whereas time complexity of the not-first/not-last [1, 8]

algorithm is O(n2) (where n = |T | is the number of activities). This paper in-
troduce a new O(n log n) version of the not-first/not-last algorithm and also a
third O(n log n) filtering algorithm. All these three algorithms filter out different
inconsistent values and therefore they can be used together to join their filtering
powers.

Let us establish a notation concerning a subset of activities. Let Θ ⊆ T be an
arbitrary subset of activities. An earliest starting time estΘ, a latest completion
time lctΘ and a processing time pΘ of the set Θ are:

estΘ = min {estj , j ∈ Θ}

lctΘ = max {lctj , j ∈ Θ}

pΘ =
∑

j∈Θ

pj

An earliest completion time of the set Θ is:

ECTΘ = max {estΘ′ + pΘ′ , Θ′ ⊆ Θ}

2 Θ-Tree

Algorithms in this paper are based on an idea of organizing a set Θ ⊆ T in
a balanced binary tree. Because the set represented by the tree will be always
named Θ, we will call the tree Θ-tree. The purpose of a Θ-tree is to quickly
recompute ECTΘ when an activity is inserted or removed from the set Θ.

A Θ-tree is a balanced binary search tree with respect to esti. Each activity
i ∈ Θ is represented by a single node. In the following we do not make a difference
between an activity the tree node representing that activity.

Notice, that so far Θ-tree does not require any particular way of balancing.
Any type of balanced binary tree (AVL-tree, black-red-tree etc.) is possible. The
only requirement is a time complexity O(n log n) for inserting or deleting a node,
and time complexity O(1) for finding a root node.

It is also possible to start with a perfect balanced tree build from all activities
T with “empty” nodes. Inserting a node means to fill such empty node, deleting
a node makes it empty over again. This is the implementation choosed by the
author.

Let left(i) be a left son of an activity i (if it has one), similarly let right(i) be a
right son of the activity i. We will also need a notation for subtrees: let Subtree(i)
be a set of all activities in the subtree rooted in i; Left(i) = Subtree(left(i)),
Right(i) = Subtree(right(i)).

Because a Θ-tree is a balanced binary tree with respect to esti, we have:

∀i ∈ Θ ∀j ∈ Left(i) : estj ≤ esti

∀i ∈ Θ ∀j ∈ Right(i) : estj ≥ esti

Besides the activity itself, each node i of a Θ-tree also holds following two
values:

ΣPi =
∑

j∈Subtree(i)

pj

ECTi =ECTSubtree(i) = max {estΘ′ + pΘ′ , Θ′ ⊆ Subtree(i)}

esta = 30

pa = 3

ΣPa = 41

ECTa = 54

estb = 10

pb = 7

ΣPb = 18

ECTb = 31

estc = 35

pc = 6

ΣPc = 20

ECTc = 52

estd = 0

pd = 5

ΣPd = 5

ECTd = 5

este = 25

pe = 6

ΣPe = 6

ECTe = 31

estf = 30

pf = 4

ΣPf = 4

ECTf = 34

estg = 42

pg = 10

ΣPg = 10

ECTg = 52

Fig. 1. An example of a Θ-tree

Values ΣPi and ECTi can be computed from direct descendants of the node
i:

ΣPi =ΣPleft(i) + pi + ΣPright(i)

ECTi =max
{

ECTleft(i) + pi + ΣPright(i),

esti + pi + ΣPright(i),

ECTright(i)

}

Thanks to this recursive nature, values ECT and ΣP can be computed within
usual operations with balanced binary search trees without changing their time
complexities. Following table summarizes time complexities of operations with
Θ-tree:

Operation Time Complexity

Θ := ∅ O(1) or O(n log n)
Θ := Θ ∪ {i} O(log n)
Θ := Θ \ {i} O(log n)
ECTΘ O(1)
ECTΘ\{i} O(log n)

3 Overload checking using Θ-tree

Let us consider an arbitrary set Ω ⊆ T . Overload rule says that if the set Ω

cannot be processed within its time bounds then no solution exists:

lctΩ − estΩ < pΩ ⇒ fail

Let us suppose for a while that we are given an activity i ∈ T and we want to
check this rule only for these sets Ω ⊆ T which have lctΩ = lcti. Now consider
a set Θ:

Θ = {j, j ∈ T & lctj ≤ lcti}

Overloaded set Ω with lctΩ = lcti exists if and only if ECTΘ > lcti = lctΘ. The
idea of an algorithm is to gradually increase the set Θ by increasing lctΘ. For
each lctΘ we check whether ECTΘ > lctΘ or not.

Θ := ∅ ;
for i ∈ T in ascending order of lcti do begin

Θ := Θ ∪ {i} ;
i f ECTΘ ≥ lcti then

f a i l ; {No solution exists}
end ;

Time complexity of this algorithm is O(n log n): the activities have to be
sorted and n-times an activity is inserted into the set Θ.

4 Not-first/not-last using Θ-tree

Not-first and not-last are two symmetric propagation algorithms for an unary
resource. From these two, we will consider only the not-last algorithm.

Let us consider a set Ω ⊆ T and an activity i ∈ (T \ Ω). The activity i

cannot be scheduled after the set Ω (i.e. i is not last within Ω ∪ {i}) if:

estΩ + pΩ > lcti − pi (1)

In that case, at least one activity from the set Ω must be scheduled after the
activity i. Therefore the value lcti can be updated:

lcti := min
{

lcti, max
{

lctj − pj , j ∈ Ω
}}

(2)

There are two versions of the not-first/not-last algorithms: [1] and [8]. Both of
them have time complexity O(n2). The first algorithm [1] finds all the reductions
resulting from the previous rules in one pass. Still, after this propagation, next
run of the algorithm may find more reductions (not-first and not-last rules are not
idempotent). Therefore the algorithm should be repeated until no more reduction
is found (i.e. a fixpoint is reached). The second algorithm [8] is simpler and faster,
but more iterations of the algorithm may be needed to reach a fixpoint.

The algorithm presented here can also needs more iteration to reach a fixpoint
then the algorithm [1] maybe even more then the algorithm [8]. However, time
complexity is reduced from O(n2) to O(n log n).

Suppose we want to update the lcti according to the rule not-last. To really
achieve some change of lcti using the rule (2), the set Ω must fulfil following
property:

max
{

lctj − pj , j ∈ Ω
}

< lcti

Therefore:

Ω ⊆
{

j, j ∈ T & lctj − pj < lcti & j 6= i
}

We will use the same trick as [8]: lets not slow down the algorithm by search-
ing the best update of lcti. Rather, find some update: if lcti can be updated
better, let it be done in the next run of the algorithm. Therefore our goal is to
update lcti to max

{

lctj − pj , j ∈ T & lctj − pj < lcti

}

.
Let us define the set Θ:

Θ =
{

j, j ∈ T & lctj − pj < lcti

}

Thus: the lcti can be changed according to the rule not-last if and only if
there is some set Ω ⊆ (Θ \ {i}) for which the inequality (1) holds:

estΩ + pΩ > lcti − pi

And such a set Ω exists iff:

ECTΘ\{i} > lcti − pi

The algorithm proceeds as follows. Activities i are taken in the ascending
order of lcti. For each one activity i the set Θ is computed using the set Θ of
previous activity i. Then ECTΘ\{i} is checked and lcti is eventually updated:

1 Θ := ∅ ;
2 Q := queue of all activities j ∈ T in ascending order of lctj − pj ;

3 for i ∈ T in ascending order of lcti do begin

4 while lcti > lctQ.first − pQ.first do begin

7 j := Q. f i r s t ;
8 Θ := Θ ∪ {j} ;
9 Q. dequeue ;

10 end ;
11 i f ECTΘ\{i} > lcti − pi then

12 lcti := lctj − pj ;

13 end ;

Lines 7–9 are repeated n times maximum, because each time an activity is
removed from the queue. Check at the line 11 can be done in O(log n). Therefore
the time complexity of the algorithm is O(n log n).

Without changing the time complexity, the algorithm can be slightly im-
proved: the not-last rule can be also checked for the activity j just before the
insertion of the activity j into the set Θ (i.e. after the line 4):

5 i f ECTΘ > lctQ.first − pQ.first then

6 lctQ.first := lctj − pj ;

5 Detectable Precedences

An idea of detectable precedences was introduced in [9] for a batch resource with

sequence dependent setup times, what is an extension of an unary resource.

Following figure is taken from [9]. It shows a situation when neither edge-
finding nor not-first/not-last can change any time bound, but a propagation of
detectable precedences can.

A

B

C

pA = 11

p
B

= 10

p
C

= 5

0 = estA lctA = 25

1 = estB lctB = 27

estC = 14 lctC = 35

Fig. 2. A sample problem for detectable precedences

Edge-finding algorithm recognizes that the activity A must be processed be-
fore the activity C, i.e. A � C, and similarly B � C. Still, each of these prece-
dences alone is weak: they do not enforce any change of any time bound. However,
from the knowledge {A, B} � C we can deduce estC ≥ estA + pA + pB = 21.

A precedence j � i is called detectable, if it can be “discovered” only by
comparing time bounds of these two activities:

esti + pi > lctj − pj ⇒ j � i (3)

Notice that both precedences A � C and B � C are detectable.

There is a simple quadratic algorithm, which propagates all known prece-
dences on a resource. For each activity i build a set Ω = {j ∈ T, j � i}.
Note that precedences j � i can be of any type: detectable precedences, search
decisions or initial constraints. Using such set Ω, esti can be adjusted: esti :=
max {esti, ECTΩ} because Ω � i.

for i ∈ T do begin

m := −∞ ;
for j ∈ T in non-decreasing order of estj do

i f j � i then

m := max {m, estj} + pj ;

esti := max {m, esti} ;
end ;

A symmetric algorithm adjusts lcti.

However, propagation of detectable precedences only can be done within
O(n log n). Let Θ be following set of activities:

Θ =
{

j, j ∈ T & esti + pi > lctj − pj

}

Thus Θ \ {i} is a set of all activities which must be processed before the activity
i because of detectable precedences. Using the set Θ \ {i} the value esti can be
adjusted:

esti := max
{

esti, ECTΘ\{i}

}

There is also a symmetric rule for precedences j � i, but we will not consider
it here, nor resulting symmetric algorithm.

An algorithm is based on an observation that the set Θ does not have to be
constructed from scratch for each activity i. Rather, the set Θ can be computed
incrementally.

1 Θ := ∅ ;
2 Q := queue of all activities j ∈ T in ascending order of lctj − pj ;

3 for i ∈ T in ascending order of esti + pi do begin

4 while esti + pi > lctQ.first − pQ.first do begin

5 Θ := Θ ∪ {Q.first} ;
6 Q. dequeue ;
7 end ;

8 esti := max
{

esti, ECTΘ\{i}

}

;
9 end ;

Initial sorts takes O(n log n). Lines 5 and 6 are repeated n times maximum,
because each time an activity is removed from the queue. Line 8 can be done in
O(log n). Therefore the time complexity of the algorithm is O(n log n).

6 Properties of Detectable Precedences

There is an interesting connection between edge-finding algorithm and detectable
precedences:

Proposition 1. When edge-finding is unable to find any further time bound

adjustment then all precedences which edge-finding found are detectable.

Proof. First, brief introduction of edge-finding algorithm. Consider a set Ω ⊆ T

and an activity i 6∈ Ω. The activity i has to be scheduled after all activities from
Ω, if:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) : min (estΩ , esti) + pΩ + pi > lctΩ ⇒ Ω � i (4)

Once we know that the activity i must be scheduled after the set Ω, we can
adjust esti:

Ω � i ⇒ esti := max (esti, max {estΩ′ + pΩ′ , Ω′ ⊆ Ω}) (5)

Edge-finding algorithm propagates according to this rule and its symmet-
ric version. There are several implementations of edge-finding algorithm, two
different quadratic algorithms can be found in [6, 7], [3] presents a O(n log n)
algorithm.

Let us suppose that edge-finding proved Ω � i. We will show that for an ar-
bitrary activity j ∈ Ω, edge-finding made esti big enough to make the precedence
j � i detectable.

Edge-finding proved Ω � i so the condition (4) was true before the filtering:

min (estΩ , esti) + pΩ + pi > lctΩ

However, increase of any est or decrease of any lct cannot invalidate this condi-
tion, therefore it has to be valid now. And so:

estΩ > lctΩ − pΩ − pi (6)

Because edge-finding is unable to further change any time bound, according to
(5) we have:

esti ≥ max{estΩ′ + pΩ′ , Ω′ ⊆ Ω}

esti ≥ estΩ + pΩ

In this inequality, estΩ can be replaced by the right side of the inequality (6):

esti > lctΩ − pΩ − pi + pΩ

esti > lctΩ − pi

And lctΩ ≥ lctj because j ∈ Ω:

esti > lctj − pi

esti + pi > lctj − pj

So the condition (3) holds and the precedence j � i is detectable.

The proof for the precedences resulting from i � Ω is symmetrical. ut

Previous proposition has also one negative consequence. Papers [4, 8, 10]
mention following improvement of edge-finding: whenever Ω � i is found, prop-
agate also j � i for all j ∈ Ω. I.e. change also lctj . However, these precedences
are detectable and so the second run of edge-finding would propagate them any-
way. Therefore such improvement can save some iterations of edge-finding, but
do not enforce better pruning in the end.

Several authors (e.g. [2, 5]) suggest to compute a transitive closure of prece-
dences. Detectable precedences has also an interesting property in such transitive
closure.

Lets us call a precedence i � j propagated iff the activities i and j fulfill
following two inequalities:

estj ≥ esti + pi

lcti ≤ lctj − pj

Note that edge-finding and precedence propagation algorithm make all known
precedences propagated.

Following proposition has an easy consequence: detectable precedences can
be skipped when computing a transitive closure.

Proposition 2. Let a � b, b � c and one of these precedences is detectable

and the second one propagated. Then the precedence a � c is detectable.

Proof. We distinguish two cases:

1. a � b is detectable and b � c is propagated. Because the precedence
b � c is propagated:

estc ≥ estb + pb

and because the precedence a � b is detectable:

estb + pb > lcta − pa

estc > lcta − pa

Thus the precedence a � c is detectable.

2. a � b is propagated and b � c is detectable. Because the precedence
a � b is propagated:

lctb − pb ≥ lcta

And because the second precedence b � c is detectable:

estc + pc > lctb − pb

estc + pc > lcta

Once again, the precedence a � c is detectable. ut

7 Experimental Results

A reduction of a time complexity of an algorithm is generally a “good think”.
However for small n, an easy and short algorithm can outperform a complicated
algorithm with better time complexity. It is therefore reasonable to ask whether it
is the case of the new not-first/not-last algorithm. Another question is a filtering
power of the detectable precedences. Following benchmark should bring answers
to these questions.

The benchmark is based on a computation of destructive lower bounds for
several jobshop benchmark problems. Destructive lower bound is a minimum
length of the schedule, for which we are not able to proof infeasibility without
backtracking. Lower bounds computation is a good benchmark problem because
there is no influence of a search heuristic. Four different destructive lower bounds
where computed. Lower bound LB1 is computed using only edge-finding algo-
rithm [6]1 and new version of not-first/not-last:

repeat

repeat

edge finding ;
until no more propagation ;
not-first/not-last ;

until no more propagation ;

Detectable precedences were used for computation of LB2:

repeat

repeat

repeat

detectable precedences ;
until no more propagation ;
not-first/not-last ;

until no more propagation ;
edge finding ;

until no more propagation ;

Note that the order of the filtering algorithms affects total time however it
does not influence resulting fixpoint. The reason is that even after an arbitrary
propagation, all used reduction rules remain valid and propagates the same or
even better.

Another two lower bounds where computed using shaving as suggested in [6].
Shaving is like a proof by contradiction. We choose an activity i, limit its esti

or lcti and propagate. If an infeasibility is found, then the limitation was invalid
and so we can increase esti or decrease lcti. Binary search is used to find the
best shave. To limit CPU time, shaving is used for each activity only once.

Often detectable precedences improve the filtering, however do not increase
the lower bound. Therefore a new column R is introduced. After the propagation

1 Note that it is a quadratic algorithm

with LB as upper bound, domains are compared with a state when only binary
precedences were propagated. The result is an average domain size in percents.

CPU2 time was measured only for shaving (columns T, T1–T3 in seconds).
It is a time needed to proof the lower bound, i.e. propagation is done twice:
with upper bound LB and LB-1. Times T1–T3 shows the difference between the
not-first/not-last algorithms: new algorithm for T1, [8] for T2 and [1] for T3.

For improving readability, when LB1=LB2, then dash is reported in LB2.
The same rule was applied to shaving lower bounds and columns R.

Shaving EF+NFNL Shaving DP+NFNL+EF
Prob. Size LB1 LB2 LB R T LB R T1 T2 T3

abz5 10 x 10 1126 1127 1195 76.81 1.337 1196 76.95 1.393 1.392 1.447
abz6 10 x 10 889 890 940 58.76 1.540 941 66.92 1.743 1.745 1.808
abz7 20 x 15 651 - 651 62.15 3.539 - 62.08 3.236 3.332 3.561
abz8 20 x 15 608 - 621 85.88 12.28 - 85.51 11.88 12.06 12.66
orb01 10 x 10 975 - 1017 76.50 1.822 - 76.15 1.743 1.748 1.814
orb02 10 x 10 812 815 865 56.66 1.681 869 84.52 1.465 1.464 1.521
la21 15 x 10 1033 - 1033 72.99 0.751 - 72.93 0.743 0.759 0.810
la22 15 x 10 913 - 924 57.81 3.475 925 69.53 3.448 3.511 3.685
la26 20 x 10 1218 - 1218 97.78 0.806 - - 0.724 0.760 0.880
la27 20 x 10 1235 - 1235 91.06 1.055 - - 0.875 0.915 1.040
la36 15 x 15 1233 - 1267 87.77 5.761 - 87.66 5.303 5.414 5.686
la37 15 x 15 1397 - 1397 66.23 2.731 - 66.21 2.471 2.527 2.658
ta01 15 x 15 1190 1193 1223 73.62 9.840 1224 71.38 9.034 9.174 9.536
ta02 15 x 15 1167 - 1210 84.38 7.585 - 75.76 7.012 7.137 7.470
ta11 20 x 15 1269 - 1295 73.74 18.51 - 70.61 14.55 14.86 15.50
ta12 20 x 15 1314 - 1336 86.63 21.03 - 86.22 17.25 17.66 18.55
ta21 20 x 20 1508 - 1546 82.62 43.68 - 80.96 38.27 39.33 40.32
ta22 20 x 20 1441 - 1499 82.84 31.16 - 92.85 25.19 25.64 26.66
yn1 20 x 20 784 - 816 86.66 29.09 - 86.33 26.39 26.94 28.04
yn2 20 x 20 819 835 841 84.91 24.40 842 88.61 22.65 23.06 24.09

Table 1. Destructive Lower Bounds

The table shows that detectable precedences improved the filtering but not
much. However there is another interesting point: detectable precedences speed
up the propagation, compare T and T1 e.g. for ta21. It is because detectable
precedences are able “steal” a lot of work from edge-finding and do it faster.

Quite surprisingly, new not-first/not-last algorithm is about the same fast as
[8] for n = 10, for bigger n it begins to be be faster. Note that the most filtering is
done by detectable precedences, therefore speed of a not-first/not-last algorithm
has only minor influence to total time.

2 Benchmarks were performed on Intel Pentium Centrino 1300MHz

References

[1] Philippe Baptiste and Claude Le Pape. Edge-finding constraint propagation
algorithms for disjunctive and cumulative scheduling. In Proceedings of the

Fifteenth Workshop of the U.K. Planning Special Interest Group, 1996.
[2] Peter Brucker. Complex scheduling problems, 1999. URL http://citeseer.

nj.nec.com/brucker99complex.html.
[3] Jacques Carlier and Eric Pinson. Adjustements of head and tails for the

job-shop problem. European Journal of Operational Research, 78:146–161,
1994.

[4] Yves Caseau and Francois Laburthe. Disjunctive scheduling with task in-
tervals. In Technical report, LIENS Technical Report 95-25. Ecole Normale
Suprieure Paris, Franc, 1995.

[5] W. Nuijten F. Foccaci, P. Laborie. Solving scheduling problems with setup
times and alternative resources. In Proceedings of the 4th International

Conference on AI Planning and Scheduling, AIPS’00, pages 92–101, 2000.
[6] Paul Martin and David B. Shmoys. A New Approach to Computing Op-

timal Schedules for the Job-Shop Scheduling Problem. In W. H. Cunning-
ham, S. T. McCormick, and M. Queyranne, editors, Proceedings of the 5th

International Conference on Integer Programming and Combinatorial Opti-

mization, IPCO’96, pages 389–403, Vancouver, British Columbia, Canada,
1996.

[7] Caude Le Pape Philippe Baptiste and Wim Nuijten. Constraint-Based

Scheduling: Applying Constraint Programming to Scheduling Problems.
Kluwer Academic Publishers, 2001.

[8] Philippe Torres and Pierre Lopez. On not-first/not-last conditions in dis-
junctive scheduling. European Journal of Operational Research, 1999.

[9] Petr Viĺım. Batch processing with sequence dependent setup times: New
results. In Proceedings of the 4th Workshop of Constraint Programming for

Decision and Control, CPDC’02, Gliwice, Poland, 2002.
[10] Armin Wolf. Pruning while sweeping over task intervals. In Principles and

Practice of Constraint Programming - CP 2003, Kinsale, Ireland, 2003.

