
Filtering Algorithm Sequence Composition for
Batch Processing with Sequence Dependent Setup

Times

Petr Vilı́m and Roman Barták∗

Charles University
Faculty of Mathematics and Physics

Malostranské náměstı́ 2/25, Praha 1, Czech Republic
vilim@kti.mff.cuni.cz,
bartak@kti.mff.cuni.cz

May 28, 2002

Abstract

There exist three filtering algorithms for batch processing with sequence dependent
setup times: edge-finding, not-first/not-last and not-before/not-after. In this paper we
propose another filtering algorithm called sequence composition. This algorithm can
be used together with the previous three for even better pruning of search space. How-
ever, experimental results show that sequence composition is slow and yield only a few
domain reductions.

1 Introduction

In ours previous work (Vilı́m and Barták 2002b) we proposed some filtering algorithms
for batch processing with sequence dependent setup times. In this paper we describe one
more algorithm – sequence composition. Each of these algorithms find different sort of
inconsistencies therefore they can be used together.

This technical report closely bear on the paper (Vilı́m and Barták 2002b), we will use
the notation, definitions and functions from this paper without explaining them again.

Consider following problem consisting of four tasks T = {1, 2, 3, 4}, three families
F = {1, 2, 3} and machine with capacity C = 2:

∀f, g ∈ F : sfg =

{

0 when f = g

1 when f 6= g

∀f ∈ F : pf = 1

f1 = 1, r1 = 0, d1 = 5, c1 = 2

f2 = 2, r2 = 0, d2 = 5, c2 = 2

f3 = 3, r3 = 0, d3 = 3, c3 = 1

f4 = 3, r4 = 2, d4 = 5, c4 = 1

This problem has only two solutions. One of them is on the following picture, the
second one is the same but the tasks 1 and 2 are swaped.

∗Supported by the Grant Agency of the Czech Republic under the contract no. 201/01/0942

1

1

p1 = 1 s1,3 = 1

3

4

p3 = 1 s3,2 = 1

2

p2 = 1

C = 2

0 1 2 3 4 5

Edge-finding, not-first/not-last and not-before/not-after do not deduce any change of
time bounds. However we see that r3 and d4 can be changed to: r3 = 2, d4 = 3. This the
motivation for our algorithm.

The idea of sequence composition is to find out that two or more activities of the same
type have to be processed without interruption by different family. From this knowledge
we can find the change of the time bounds.

The paper is organized as follows: first we establish new precomputed function q, in the
next section we show how to detect some sets of uninterruptible activities and propose the
filtering rules. Finally we build up filtering algorithm and conclude with some experimental
results.

2 Setup Time with Interruption

We need to recognize when the interruption between the activites with the same family is
not possible. For that we need to now how long would be the setups when the interruption
occurs. Therefore we define function q similar to function s (see Vilı́m and Barták 2002b).
Value of q(f, g, φ) is the minimal setup time needed for processing the activities with fam-
ilies φ under the condition that the processing starts with an activity with family f ∈ φ and
the processing of the the family g ∈ φ is interrupted at least once by an activity with the
type from φ \ {g}. The values of the function q(f, g, φ) can be computed in time O(k32k)
using the following inductive formulas:

∀f ∈ F : q(f, f, {f}) = ∞

∀φ ⊂ F, φ 6= ∅, ∀f ∈ (F \ φ), ∀g ∈ φ :

q(f, f, φ ∪ {f}) = min{sfh + s(h, φ ∪ {f}), h ∈ φ}

q(f, g, φ ∪ {f}) = min{sfh + q(h, g, φ), h ∈ φ}

When we do not care which family actually starts the processing we omit the first argument.
Thus q(g, φ) is a minimal setup time needed for processing the activities with families φ
under the condition that the processing of family g is interrupted at least once by an activity
with type from φ \ {g}. The function q(g, φ) is defined by the following formula:

∀φ ⊂ F, ∀g ∈ φ : q(g, φ) = min{q(f, g, φ), f ∈ φ}

3 Sequence Composition Rules

As mentioned above we try find out when the processing of one family family cannot be
interrupted by an activity with different family. Consider a family g and a set of tasks Ω
which contains at least two activities with the family g. If we interrupt processing of the
family g by some activity j ∈ Ω, fj 6= g, then the processing of activities Ω takes at least
the time:

v(Ω, g) =

{

q(FΩ, g) + u(Ω) when u(Ω, g) > pg

q(FΩ, g) + u(Ω) + pg when u(Ω, g) = pg

It is possible that there is not enough time for such interruption:

dΩ − rΩ < v(Ω, g) (1)

2

In this case all the activities from Ω with the family g have to be processed without inter-
ruption by another activities from Ω. The interruption still can occur but only by an activity
from T \Ω (and with the family that is not in FΩ). The following figure shows an example
of such interruption:

g

pg sgf

f

pf
sfg

g

pg

Anyway, processing of all the activities from Ω with the family g (including possible
interruptions by activities from T \ Ω) cannot take longer than u(Ω, g) + m(Ω), where
m(Ω) is the slack (free time) in Ω:

m(Ω) = dΩ − rΩ

In order to process the activity i with the family g together with the other activities of the
family g, we cannot start processing of the family g before ri + pg − u(Ω, g) − m(Ω):

processing of the family g cannot start before this time

u(Ω, g) + m(Ω)

ri

i

pg

Similarly, processing of the family g cannot complete after di − pg + u(Ω, g) + m(Ω).
When we combine the above deductions for all the activities of the family g from the set Ω,
we get that processing of the family g can’t start before the time t1(Ω) and complete after
the time t2(Ω):

t1(Ω) = max{ri, i ∈ Ω & fi = g}+ pg − u(Ω, g) − m(Ω)

t2(Ω) = min{di, i ∈ Ω & fi = g} − pg + u(Ω, g) + m(Ω)

It is possible that t1(Ω) < rΩ or t2(Ω) > dΩ. Hence we introduce the new values
t′1(Ω) and t′2(Ω):

t′1(Ω) = max{t1(Ω), rΩ}

t′2(Ω) = min{t2(Ω), dΩ}

All the activities with family g in the set Ω have to be processed in the interval 〈t′1(Ω), t′2(Ω)〉.
When we process only such activities in this interval then there is a slack:

m′(Ω) = t′2(Ω) − t′1(Ω) − u(Ω, g)

The first batch in the sequence have to start in the interval 〈t′1(Ω), t′1(Ω) + m′(Ω)〉, the
second batch in the interval 〈t′1(Ω) + pg , t

′

1(Ω) + pg + m′(Ω)〉 etc.:

t′1(Ω) t′2(Ω)
pg pg pgm′(Ω)

The second batch have to start within this interval

3

Although we do not know yet, which activity will be in the first batch etc., we can still
deduce the new time windows for the activities of the family g. The new values for rj and
dj must be in the following union of intervals:

rj ∈
⋃

l∈N0

〈t′1(Ω) + lpg, t
′

1(Ω) + lpg + m′(Ω)〉 (2)

dj ∈
⋃

l∈N0

〈t′2(Ω) − lpg − m′(Ω), t′2(Ω) − lpg〉 (3)

Notice that the above union of intervals is in fact a single interval modulo pg . Let us
define Λ(a, b, c):

Λ(a, b, c) = {a mod c, (a + 1) mod c, . . . , b mod c}

The set Λ(a, b, c) is an interval in (N mod c) so we can represent it by two values only -
the lower bound and the upper bound. The intersection of two such intervals Λ(a, b, c) and
Λ(d, e, c) is again an interval in the form Λ(x, y, c). Such intersection can be found in the
time O(1).

Now we can rewrite the rules (2) and (3) using Λ:

ri ≥ t1(Ω) (4)

ri mod pg ∈ Λ(t′1(Ω), t′1(Ω) + m′(Ω), pg) (5)

di ≤ t2(Ω) (6)

di mod pg ∈ Λ(t′2(Ω) − m′(Ω), t′2(Ω), pg) (7)

4 The Algorithm Sequence Composition

It is not necessary to apply the rules for all the sets Ω ⊆ T :

Theorem 1 To find all the changes resulting from the rules (1), (2), and (3) it is sufficient
to choose all the sets Ω in the form of a tasks interval.

Proof: Let us consider an arbitrary set Ω. Let Ψ denotes the set:

Ψ = {i, i ∈ T & ri ≥ rΩ & di ≤ dΩ}

The set Ψ is a tasks interval and we are going to show that the above rules deduce the same
or even better change of ri for the set Ψ in comparison to set Ω. It is obvious that:

Ψ ⊇ Ω

rΨ = rΩ

dΨ = dΩ

Hence v(Ω, g) ≤ v(Ψ, g) for an arbitrary family g. Because (1) holds for Ω it have to hold
for Ψ as well. From the above three formulae we deduce:

m(Ψ) ≤ m(Ω)

u(Ψ, g) ≥ u(Ω, g)

max{ri, i ∈ Ψ & fi = g} ≥ max{ri, i ∈ Ω & fi = g}

min{di, i ∈ Ψ & fi = g} ≤ min{di, i ∈ Ω & fi = g}

t1(Ψ) ≥ t1(Ω)

t2(Ψ) ≤ t2(Ω)

t′1(Ψ) ≥ t′1(Ω)

t′2(Ψ) ≤ t′2(Ω)

m′(Ψ) ≤ m′(Ω)

4

Because the difference between u(Ψ, g) and u(Ω, g) cannot be bigger than the difference
between m(Ω) and m(Ψ), the following inequality holds: u(Ω, g) + m(Ω) ≥ u(Ψ, g) +
m(Ψ).

So the changes of ri and di deduced by the rules (4) and (5) applied on the set Ψ are at
least as good as the changes deduced by the same rules applied on the set Ω. �

When we change the value ri using the rule (5) for the set Ω1, it may happen than
after the second change using the same rule but another set Ω2 the new value for ri does
not match with the rule (5) and the set Ω1. Therefore we do not change the values ri

immediately but we write down the intervals Λr and Λd for the values (ri mod pi) and
(di mod pi). Then we compute the intersection of all such intervals and finally we make
the changes of ri and di.

Let us choose an activity j and a family g. We create the sequence of all the tasks
intervals Ω0 ⊆ Ω1 ⊆ · · · ⊆ Ωx such that dj = dΩ0

= dΩ1
= · · · = dΩx

. Let us introduce
a new notation:

n(Ω, f) = |{k, k ∈ Ω & fk = f}|

M(i) = {l, l ∈ {i, i + 1, . . . , x} &

dΩl
− rΩl

< v(Ωl, g) & n(Ωl, g) ≥ 2}

t1(i) = max{t1(Ωl), l ∈ M(i)}

t2(i) = min{t2(Ωl), l ∈ M(i)}

Λr(i) =
⋂

l∈M(i)

Λ(t′1(Ωl), t
′

1(Ωl) + m′(Ωl), pg)

Λd(i) =
⋂

l∈M(i)

Λ(t′2(Ωl) − m′(Ωl), t
′

2(Ωl), pg)

For a given activity j and a family g we can compute all the values t1(i), t2(i), Λr(i), Λd(i)
in time O(n).

Now consider an activity k of a family g such that k ∈ Ωi and k /∈ Ωi−1. The rules (1),
(2), and (3) for the activity k and the sets Ω such as dΩ = dj deduce exactly:

ri ≥ t1(i)

ri mod pg ∈ Λr(i)

di ≤ t2(i)

di mod pg ∈ Λr(i)

The above formulae are the basis of the filtering algorithm. We expect that all the activities
are sorted in the decreasing order of ri. The time time complexity of this algorithm is
O(kn2).

5

for i ∈ T do begin
// lr is the set of possible values ri mod pfi

:
lr [i] := {0, 1, . . . , pfi

− 1} ;
// similarly ld:
ld[i] := {0, 1, . . . , pfi

− 1} ;
end;

for g ∈ F do begin
for j ∈ T do begin

count values t1(i), t2(i), Λr(i) and Λd(i) for i = 0, 1, . . . , x ;
k := activity with the greatest ri ;
i := x;
while i ≥ 0 and k ∈ T do begin

if fk 6= g or dk > dj then begin
k := next activity with the same or greater rk ;
continue;

end;

// Now we know fk = g and k ∈ Ωi.
if rk < rΩi−1

then begin
// k /∈ Ωi−1

rk ≥ t1(i) ;
dk ≤ t2(i) ;
lr [k] := lr [k] ∩ Λr(i) ;
ld[k] := ld[k] ∩ Λd(i) ;
k := next activity with the same or greater rk ;

end else
// We already went over all activities k such that fk = g, k ∈ Ωi and k /∈ Ωi−1.
// So continue with Ωi−1:
i := i−1;

end;
end;

end;

for i ∈ T do begin
if lr [i] = ∅ or ld[i] = ∅ then fail ;
ri := the smallest integer greater or equal ri such that ri mod pfi

∈ lr [i];
di := the greatest integer lower or equal di such that di mod pfi

∈ ld [i];
end;

6

5 Experimental Results

The individual filtering techniques have been combined into a single filtering algorithm
accordingly to (Vilı́m and Barták 2002b). New algorithm sequence composition is in the
outermost loop because most of the time it do not deduce new reductions:

repeat
repeat

repeat
repeat

consistency check
edge-finding

until no more changes found
not-before/not-after

until no more changes found
not-first/not-last

until no more changes found
sequence composition

until no more changes found

As the benchmark set we used (Vilı́m and Barták 2002a). For each problem we mea-
sured the computer time1 and number of backtracks with and without the sequence compo-
sition. We measured number of reductions made by sequence composition. These reduc-
tions are of two types:

Reductions 1: from the rules (4) and (6), i.e. ri ≥ t1(Ω) and di ≤ t2(Ω).
Reductions 2: from the rules (5) and (7), i.e:

ri mod pg ∈ Λ(t′1(Ω), t′1(Ω) + m′(Ω), pg)

di mod pg ∈ Λ(t′2(Ω) − m′(Ω), t′2(Ω), pg)

Table 1 shows the results.

6 Conclusions

Experimental results are disappointing – only for problems a and p the number of back-
tracks is little bit lower but the CPU time bigger for all the problems. In the cases d, e, g, o,
v and w the algorithm made some reductions but the number of backtracks stayed the same
– sequence composition found some reductions, but without the sequence composition the
same reductions were deduced also by another filtering algorithm somewhere deeper in the
search tree.

Reduction of type 1 was not found for any of the problems. It indicates that the bench-
mark set is not really random. The question is how to generate better benchmark problems.

References

P. Vilı́m and R. Barták. A benchmark set for batch processing with sequence dependent
setup times. http://kti.mff.cuni.cz/˜vilim/batch, 2002a.

P. Vilı́m and R. Barták. Filtering algorithms for batch processing with sequence dependent
setup times. In Proceedings of the 6th International Conference on AI Planning and
Scheduling, AIPS’02, 2002b.

1On Intel Pentium Celeron 375MHz

7

with sequence composition
problem n k solutions backtracks time backtracks time Reductions 1. Reductions 2.

a 30 3 88 12 2.22s 9 2.60s 0 2
b 25 5 56251 5016 25m 30s 5016 30m 52s 0 0
c 25 5 72 0 1.78s 0 2.11s 0 0
d 40 6 12 1 1.02s 1 1.15s 0 1
e 20 2 28 0 0.20s 0 0.26s 0 1
f 50 6 6 2 0.70s 2 0.86s 0 0
g 30 3 1690 77 37.08s 77 45.23 0 5
h 75 5 12 2 2.90s 2 3.40s 0 0
i 50 5 48 44 7.59s 44 8.89s 0 0
j 50 5 10 4 1.34s 4 1.43s 0 0
k 50 7 9 0 1.33s 0 1.46s 0 0
l 50 5 4 0 0.51s 0 0.52s 0 0

m 50 3 3 3 0.35s 3 0.40s 0 0
n 30 5 39 13 1.78s 13 1.94s 0 0
o 50 5 32 8 3.60s 8 4.14s 0 0
p 30 3 270 24 6.05s 18 6.69s 0 13
q 50 7 228 0 28.03s 0 33.90s 0 0
r 50 7 324 0 44.94s 0 49.01s 0 0
s 100 7 50 0 26.48s 0 30.74s 0 0
t 200 7 8 0 18.00s 0 20.36s 0 0
v 100 7 240 0 2m 6s 0 2m 25s 0 1
w 50 2 24 4 1.36s 4 1.50s 0 1
x 50 2 1368 384 1m 8s 384 1m 18s 0 0
z 50 4 24 7 2.14s 7 2.58s 0 0

Table
1:

E
xperim

entalresults.

8

